Publications by authors named "Renqiang Yuan"

Point-of-care (POC) monitoring of clinical inflammation biomarkers in interstitial fluid (ISF) has a great perspective on personalized healthcare. Herein, an integrated ultraswelling microneedle aptamer-recognition tester (uSMART) was developed for POC monitoring of antibiotic-resistant bacterial infections and therapeutic outcomes. The hyaluronic acid methacryloyl/sodium hyaluronate-microneedle (HAMA/SH-MN) module with excellent swelling and mechanical properties could cross the epidermis and access enough dermis ISF in a minimally invasive, painless, and rapid manner.

View Article and Find Full Text PDF

Fin bud initiation factor homolog (Fibin) is a secreted protein that is relatively conserved among species. It is closely related to fin bud development and can regulate a variety of cellular processes. In our previous high-throughput chromosome conformation capture (Hi-C) study of pig embryonic muscle development, it was found that Fibin has high expression and activity during the development of pig primary muscle fibers.

View Article and Find Full Text PDF

Ubiquitin-conjugation enzyme E2C (UBE2C) is a crucial component of the ubiquitin-proteasome system that is involved in numerous cancers. In this study, we find that UBE2C expression is significantly increased in mouse embryos, a critical stage during skeletal muscle development. We further investigate the function of UBE2C in myogenesis.

View Article and Find Full Text PDF

Acute thrombosis and its complications are leading global causes of disability and death. Existing thrombolytic drugs, such as alteplase and urokinase (UK), carry a significant bleeding risk during clinical treatments. Thus, the development of a novel thrombolysis strategy is of utmost urgency.

View Article and Find Full Text PDF

Soil microorganisms and enzymes play crucial roles in soil organic carbon (SOC) sequestration by promoting soil aggregate formation and stability and by participating in SOC cycling and accumulation. However, the effects by which soil microorganisms and enzymes act as mediators driving dynamic changes in SOC during rapid urbanization remain unclear. Therefore, this study selected the built-up area of Nanchang City, China (505 km), as the study area.

View Article and Find Full Text PDF

Improved techniques for the administration of chemotherapeutic drugs are required to enhance tumor therapy efficacy and reduce the side effects of chemotherapy due to insufficient targeting and limited intratumoral drug release. Controlled drug delivery systems combined with thermotherapy are expected to play an important role in personalized tumor therapy. Herein, a novel microwave-responsive transformable magnetic liquid-metal (MLM) nanoplatform is designed for effective endosomal escape that facilitates intracellular drug delivery and enhanced anticancer therapy.

View Article and Find Full Text PDF

Diabetic wound healing remains a significant clinical challenge due to the complex microenvironment and attenuated endogenous electric field. Herein, a novel all-in-one self-powered microneedle device (termed TZ@mMN-TENG) is developed by combining the multifunctional microneedle carried tannin@ZnO microparticles (TZ@mMN) with the self-powered triboelectric nanogenerator (TENG). In addition to the delivery of tannin and Zn, TZ@mMN also effectively conducts electrical stimulation (ES) to infected diabetic wounds.

View Article and Find Full Text PDF

Boar fertility is a key determinant of the production efficiency of the whole pig breeding industry and boar sperm motility is the seminal parameter with the greatest impact on the fecundity of a sow. Exosomes are small, extracellular vesicles found in many body fluids. Seminal plasma exosomes, which are secreted by the epididymis, prostate, seminal vesicles, and testes, contain a large number of miRNAs, the types and levels of which can reflect the physiological state of source cells.

View Article and Find Full Text PDF

Bacterial-infected wound healing has always been a huge challenge to humans. Owing to the appearance of antibiotic resistance, there is an emergency need to design antibiotic-free wound dressings to treat such wounds. Herein, a novel antibiotic-free microneedle patch was designed, which its backing layer with antioxidant effect was coated with sodium carboxymethyl cellulose, 2-O-α-D-glucopyranosyl-L-ascorbic acid (GLAA), and 2-hydroxypropyltrimethyl ammonium chloride chitosan through electrostatic interaction based on layer-by-layer self-assembly technique, and its tips consisted of gelatin and tannic acid (TA) via hydrogen bonding interaction (CGH/GTA MN patch).

View Article and Find Full Text PDF

The one-step assembly of metal-phenolic networks (MPNs) onto particle templates can enable the facile, rapid, and robust construction of hollow microcapsules. However, the required template removal step may affect the refilling of functional species in the hollow interior space or the in situ encapsulation of guest molecules during the formation of the shells. Herein, a simple strategy for the one-step generation of functional MPNs microcapsules is proposed.

View Article and Find Full Text PDF

Appropriate treatments for acute traumas tend to avoid hemorrhages, vascular damage, and infections. However, in the homeostasis-imbalanced wound microenvironment, currently developed therapies could not precisely and controllably deliver biomacromolecular drugs, which are confronted with challenges due to large molecular weight, poor biomembrane permeability, low dosage, rapid degradation, and bioactivity loss. To conquer this, we construct a simple and effective layer-by-layer (LBL) self-assembly transdermal delivery patch, bearing microneedles (MN) coated with recombinant human epidermal growth factor (LBL MN-rhEGF) for a sustained release to wound bed driven by typical electrostatic force.

View Article and Find Full Text PDF

Besides barrier functions, skin possesses multiple sentiences to external stimuli (e.g., temperature, force, and humidity) for human-outside interaction.

View Article and Find Full Text PDF

Delving into porcine embryonic myogenesis is the key to elucidate the complex regulation of breed-specific differences in growth performance and meat production. Increasing evidence proves that pigs with less meat production show earlier embryonic myogenesis, but little is known about the underlying mechanisms. In this study, we examine the longissimus dorsi muscle (LDM) by immunohistochemistry and confirm that the differentiation of myogenic progenitors is increased ( <0.

View Article and Find Full Text PDF
Article Synopsis
  • Liver development is complicated and involves special signals that tell cells what to do.
  • Scientists studied how the structure of DNA in liver cells changes as pigs grow up and during obesity caused by a high-fat diet.
  • They found that the flexible structure of DNA helps the liver quickly adjust to new jobs it has to do, like changing from making blood cells before birth to handling food and fighting germs after birth.
View Article and Find Full Text PDF

Wound care is still worthy of concern, and effective measures such as electrical stimulating therapy (EST) have sparked compellingly for wound repair. Especially, portable and point-of-care EST devices get extremely desired but these are often limited by inevitable external power sources, lack of biological functions, and mechanical properties conforming to skin tissue. Herein, a dress-on-person self-powered nanocomposite bioactive repairer of wound is designed.

View Article and Find Full Text PDF

Myofibres (primary and secondary myofibre) are the basic structure of muscle and the determinant of muscle mass. To explore the skeletal muscle developmental processes from primary myofibres to secondary myofibres in pigs, we conducted an integrative three-dimensional structure of genome and transcriptomic characterization of longissimus dorsi muscle of pig from primary myofibre formation stage [embryonic Day 35 (E35)] to secondary myofibre formation stage (E80). In the hierarchical genomic structure, we found that 11.

View Article and Find Full Text PDF

HMGB2, a DNA-binding protein, highly expresses during embryogenesis and plays an important role in development of some organs and tissues. However, it remains to be further investigated weather HMGB2 influences muscle development. In this work, we identified HMGB2 as an essential factor in myogenesis.

View Article and Find Full Text PDF

Layer-by-layer self-assembly (LBL) technique is a very efficient and convenient method to modify the substrate surface. In this study, we report a self-repairing surface coating that can promote cell adhesion, especially for enhancing the adhesion of coral cells on the basal surface. The results confirmed that the modified chitosan-dialdehyde starch film based on Schiff base has good biocompatibility for common mammalian cells, such as normal human dermal fibroblasts (NHDFs) and relatively special cells (coral cells).

View Article and Find Full Text PDF

Objectives: Mixed lineage leukaemia protein-1 (MLL1) mediates histone 3 lysine 4 (H3K4) trimethylation (me3) and plays vital roles during early embryonic development and hematopoiesis. In our previous study, we found its expression was positively correlated with embryonic myogenic ability in pigs, indicating its potential roles in mammalian muscle development. The present work aimed to explore the roles and regulation mechanisms of MLL1 in myogenesis.

View Article and Find Full Text PDF

Zinc finger protein 422 (Zfp422) is a widely expressed zinc finger protein that serves as a transcriptional factor to regulate downstream gene expression, but until now, little is known about its roles in myogenesis. We found here that Zfp422 plays a critical role in skeletal muscle development and regeneration. It highly expresses in mouse skeletal muscle during embryonic development.

View Article and Find Full Text PDF

Background: Myogenic Differentiation 1 (MyoD) is a crucial master switch in regulating muscle-specific gene transcription. Forced expression of myoD is equipped to induce several cell lineages into myoblast, which then differentiate and fuse into myotube. Pig is one of the most significant livestock supplying meat, and has been classified into lean, fat and miniature pig breeds.

View Article and Find Full Text PDF

Pig is one of the major dietary protein sources for human consumption, from which muscle is the largest protein origin. However, molecular mechanisms concerning early porcine embryonic muscle development distinctions between pig breeds are still unclear. In this study, an integrated analysis of transcriptome and miRNAome was conducted using longissimus dorsi muscle of 4 early embryonic stages around the primary myofiber formation time (18-, 21-, 28-, and 35-d post coitus) from 2 pig breeds (Landrace [LR] and Wuzhishan [WZS]) differing in meat mass.

View Article and Find Full Text PDF

Here, we performed whole-genome bisulfite sequencing of longissimus dorsi muscle from Landrace and Wuzhishan (WZS) miniature pigs during 18, 21, and 28 d postcoitum. It was uncovered that in regulatory regions only around transcription start sites (TSSs), gene expression and methylation showed negative correlation, whereas in gene bodies, positive correlation occurred. Furthermore, earlier myogenic gene demethylation around TSSs and earlier hypermethylation of myogenic genes in gene bodies were considered to trigger their earlier expression in miniature pigs.

View Article and Find Full Text PDF

MicroRNAs are a class of highly conserved ∼20 nucleotides non-coding RNAs that post-transcriptionally regulate gene expression. Many miRNAs were studied in the development of skeletal muscle, such as miR-1, miR-206, and miR-133. In our previous study, miR-127-3p was found highly expressed in porcine fetal skeletal muscle, whereas the detailed functions of miR-127-3p in muscle development is still unclear.

View Article and Find Full Text PDF

Activating transcription factor 4 (ATF4), which is highly expressed in 3T3-L1 adipocytes after adipogenic induction, is essential for adipocytes differentiation. ATF4 also plays a vital role in regulating fatty acids biosynthesis, whereas the detailed mechanism of this process is still unclear. Here we demonstrated that siRNA-based ATF4 depletion in 3T3-L1 adipocytes significantly reduced the accumulation of fatty acids and triglycerides.

View Article and Find Full Text PDF