Layer-by-layer microneedle patch with antibacterial and antioxidant dual activities for accelerating bacterial-infected wound healing.

Colloids Surf B Biointerfaces

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China. Electronic address:

Published: November 2023


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Bacterial-infected wound healing has always been a huge challenge to humans. Owing to the appearance of antibiotic resistance, there is an emergency need to design antibiotic-free wound dressings to treat such wounds. Herein, a novel antibiotic-free microneedle patch was designed, which its backing layer with antioxidant effect was coated with sodium carboxymethyl cellulose, 2-O-α-D-glucopyranosyl-L-ascorbic acid (GLAA), and 2-hydroxypropyltrimethyl ammonium chloride chitosan through electrostatic interaction based on layer-by-layer self-assembly technique, and its tips consisted of gelatin and tannic acid (TA) via hydrogen bonding interaction (CGH/GTA MN patch). The obtained CGH/GTA MN patch could effectively puncture the skin, and exhibit properties of pH-responsive TA and GLAA release. In vitro experiments showed that the obtained CGH/GTA MN patch has excellent antioxidative (scavenging DPPH efficacy is above 80 %, and scavenging ABTS efficiency reaches about 100 %), antibacterial (antibacterial rates of nearly 100 % for both Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli)), biodegradable, and biocompatible properties. In the S. aureus-infected rat wounds, the CGH/GTA MN patch could efficiently accelerate infected-wound healing by eliminating S. aureus infection, inhibiting inflammation, promoting angiogenesis, and accelerating epidermal regeneration. Thus, this study will provide a promising strategy to heal bacterial-infected wounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2023.113569DOI Listing

Publication Analysis

Top Keywords

cgh/gta patch
16
microneedle patch
8
bacterial-infected wound
8
wound healing
8
patch
6
layer-by-layer microneedle
4
patch antibacterial
4
antibacterial antioxidant
4
antioxidant dual
4
dual activities
4

Similar Publications

Layer-by-layer microneedle patch with antibacterial and antioxidant dual activities for accelerating bacterial-infected wound healing.

Colloids Surf B Biointerfaces

November 2023

State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, PR China. Electronic address:

Bacterial-infected wound healing has always been a huge challenge to humans. Owing to the appearance of antibiotic resistance, there is an emergency need to design antibiotic-free wound dressings to treat such wounds. Herein, a novel antibiotic-free microneedle patch was designed, which its backing layer with antioxidant effect was coated with sodium carboxymethyl cellulose, 2-O-α-D-glucopyranosyl-L-ascorbic acid (GLAA), and 2-hydroxypropyltrimethyl ammonium chloride chitosan through electrostatic interaction based on layer-by-layer self-assembly technique, and its tips consisted of gelatin and tannic acid (TA) via hydrogen bonding interaction (CGH/GTA MN patch).

View Article and Find Full Text PDF