Banana Fusarium Wilt (BFW), caused by Fusarium oxysporum f. sp. cubense (Foc), threatens banana crops globally, with the pathogen's virulence partially regulated by the Sge1 transcription factor, which enhances disease severity.
View Article and Find Full Text PDFIn this study, we report the preparation of bio-inspired binary CuO/ZnO nanocomposite (bb-CuO/ZnO nanocomposite) via the biological route using Bauhinia variegata flower extract following hydrothermal treatment. The prepared bb-CuO/ZnO nanocomposite was electrophoretically deposited (EPD) on indium tin oxide (ITO) substrate to develop bb-CuO/ZnO/ITO biosensing electrode which is employed for the determination of vitamin B (Riboflavin) through electrochemical techniques. Physicochemical assets of the prepared bb-CuO/ZnO nanocomposite have been extensively evaluated and make use of different characterization techniques including powder XRD, FT-IR, AFM, SEM, TEM, EDX, XPS, Raman, and TGA.
View Article and Find Full Text PDFJ Oral Maxillofac Pathol
September 2023
Background: Validity of various detection methods used are likely contributing factor to this wide variation of prevalence of HPV (0-73%) by using GP5/GP6/MY09/MY11 (L1) primer. PCR is a sensitive method but does not identify transcriptionally active High-risk Human papillomavirus and also does not indicate whether the virus is isolated from malignant tumour cells and non-neoplastic cells. P16ink4a Immunohistochemistry is a highly sensitive and Cost-effective surrogate marker for transcriptionally active high-risk HPV for oral cancer.
View Article and Find Full Text PDFPhytomedicine
January 2024
Background: Alzheimer's disease (AD) is characterized by neuroinflammation linked to amyloid β (Aβ) aggregation and phosphorylated tau (τ) protein in neurofibrillary tangles (NFTs). Key elements in Aβ production and NFT assembly, like γ-secretase and p38 mitogen-activated protein kinase (p38MAPK), contribute to neuroinflammation. In addition, impaired proteosomal and autophagic pathways increase Aβ and τ aggregation, leading to neuronal damage.
View Article and Find Full Text PDFInt J Biol Macromol
December 2023
One of the most important properties of cellulolytic enzyme is its ability to convert cellulosic polymer into monomeric fermentable sugars which are carbohydrate by nature can efficiently convert into biofuels. However, higher production costs of these enzymes with moderate activity-based stability are the main obstacles to making cellulase-based applications sustainably viable, and this has necessitated rigorous research for the economical availability of this process. Using water hyacinth (WH) waste leaves as the substrate for cellulase production under solid state fermentation (SSF) while treating the fermentation production medium with CuO (cupric oxide oxide) bionanocatalyst have been examined as ways to make fungal cellulase production economically feasible.
View Article and Find Full Text PDFFront Med Technol
July 2023
Nanotechnology has become one of the most rapid, innovative, and adaptable sciences in modern science and cancer therapy. Traditional chemotherapy has limits owing to its non-specific nature and adverse side effects on healthy cells, and it remains a serious worldwide health issue. Because of their capacity to specifically target cancer cells and deliver therapeutic chemicals directly to them, nanoparticles have emerged as a viable strategy for cancer therapies.
View Article and Find Full Text PDFThis special issue (SI) entitled 'Smart and intelligent optical materials for sensing applications', published by Luminescence, Wiley focuses on the recent advancement of smart and intelligent optical materials for the fabrication of sensor technology for use in numerous fields such as pharmaceutical, biomedical, and environmental. Also, detailed highlights of their prospects in the fields, for example, of personalized health care, wearable devices, and plant stress monitoring are given. This SI includes 46 peer-reviewed articles, of which 15 are reviews written by well established researchers with expertise in the field, and the remaining 31 are research articles from world-leading scientists.
View Article and Find Full Text PDFEnviron Res
October 2023
Cancer is characterized by uncontrolled cell growth, disrupted regulatory pathways, and the accumulation of genetic mutations. These mutations across different types of cancer lead to disruptions in signaling pathways and alterations in protein expression related to cellular growth and proliferation. This review highlights the AKT signaling cascade and the retinoblastoma protein (pRb) regulating cascade as promising for novel nanotheranostic interventions.
View Article and Find Full Text PDFEnviron Res
October 2023
The extremely widespread and ubiquitous nature of plastics, estimated to boost its global production by 26 billion tons till 2050. The large chunks of plastic waste that decomposed down to micro- or nano plastics (MNPs) leads to various ill effects on biological entities. The conventional PET detection methods lack rapid detection of microplastics due to variances in microplastic features, long-drawn-out sample pre-processing procedures and complex instrumentation.
View Article and Find Full Text PDFTo minimize the usage of non-renewable resources and to maintain a sustainable environment, the exploitation of green nanobiopolymers should be enhanced. Biopolymers are generally developed from various microorganisms and plants in the specified condition. This review article discusses the current advances and trends of biopolymers, particularly in the arena of nanotechnology.
View Article and Find Full Text PDFCellulases are among the most in-demand bioprocess enzymes, and the high cost of production, combined with their low enzymatic activity, is the main constraint, particularly in the biofuels industry. As a result, low-cost enzyme production modes with high activity and stability have emerged as the primary focus of research. Here, a method for producing a graphene like carbon nanostructure (GLCNs) has been investigated utilizing paddy straw (Ps), and its physicochemical characteristics have been examined using a variety of techniques including XRD, FT-IR, SEM and TEM.
View Article and Find Full Text PDFPresent study has been focused on the bio-energy potential of waste biomass (water hyacinth leaves and its stem). Pyrolysis of both biomasses were investigated at five different heating rates (5-25 C/min) using thermogravimetric analyzer. For both biomasses, maximum thermal degradation occurred within the temperature range of 200-400 °C, which is the active pyrolytic zone.
View Article and Find Full Text PDFBiomass to biofuels production technology appears to be one of the most sustainable strategies among various renewable energy resources. Herein, pretreatment is an unavoidable and key step to increase free cellulose availability and digestibility to produce green fuels. Various existing pretreatment technologies of lignocellulosics biomasses (LCBs) face distinct challenges e.
View Article and Find Full Text PDFFood safety and quality are among the most significant and prevalent research areas worldwide. The fabrication of appropriate technical procedures or devices for the recognition of hazardous features in foods is essential to safeguard food materials. In the recent era, developing high-performance sensors based on carbon nanomaterial for food safety investigation has made noteworthy progress.
View Article and Find Full Text PDFBiosensors (Basel)
August 2022
The novel coronavirus appeared to be a milder infection initially, but the unexpected outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), commonly called COVID-19, was transmitted all over the world in late 2019 and caused a pandemic. Human health has been disastrously affected by SARS-CoV-2, which is still evolving and causing more serious concerns, leading to the innumerable loss of lives. Thus, this review provides an outline of SARS-CoV-2, of the traditional tools to diagnose SARS-CoV-2, and of the role of emerging nanomaterials with unique properties for fabricating biosensor devices to diagnose SARS-CoV-2.
View Article and Find Full Text PDFPlants can achieve their proper growth and development with the help of microorganisms associated with them. Plant-associated microbes convert the unavailable nutrients to available form and make them useful for plants. Besides nutrient acquisition, soil microbes also inhibit the pathogens that cause harm to plant growth and induces defense response.
View Article and Find Full Text PDFIn the present work, we evaluated the corrosion inhibition properties of a ligand and mixed metal oxide nanocomposite. The ligand and mixed nickel-cobalt complex were synthesized using 1-naphthoic acid and aminoguanidine with the formulae [CHO(CNH)(CNH)]·HO and {Ni-Co[(CHN)(CHO)]}·HO, respectively. After their synthesis, physicochemical techniques such as CHNS analysis, infrared and UV-visible spectroscopy, thermal analysis, and X-ray diffraction (XRD) were employed to characterize both the synthesized ligand and nickel-cobalt complex.
View Article and Find Full Text PDFTo date, various reports have shown that metallic gold bhasma at the nanoscale form was used as medicine as early as 2500 B.C. in India, China, and Egypt.
View Article and Find Full Text PDFThe present report deals with the synthesis of plant-mediated copper oxide nanoparticles (pm-CuO NPs) from aqueous seed extract for effective antibacterial activity and the further utilization of this as a platform for the electrocatalytic determination of hydrogen peroxide (HO) for applications in the agricultural domain. The structural, optical and morphological characteristics of the synthesized pm-CuO NPs were analyzed by UV-Vis, XRD, FT-IR, AFM, SEM, TEM, HR-TEM and EDX. After this, pm-CuO NPs were preliminarily investigated for antibacterial activity on Gram-positive and Gram-negative bacterial strains, and further, their activity was validated for assessing their antibacterial efficiency on the , a plant pathogenic bacteria strain, and the obtained results showed that pm-CuO NPs have potency as an effective antibacterial agent for the treatment of the bacterial blight of rice caused by in the rice crop, which reduces the rice crop productivity.
View Article and Find Full Text PDFThis work deals with the synthesis of bioinspired triangular ZnO nanoclusters (bT-ZnO NCs) from nascent leaf extract for their effective antibacterial activity and further utilization as a platform for the electrocatalytic determination of ascorbic acid (AA; vitamin C) for applications in the agricultural domain. The structural, optical, and morphological characteristics of the synthesized bT-ZnO NCs were analyzed by UV-vis, FT-IR, XRD, AFM, SEM, TEM, HR-TEM, and EDX techniques. After this, bT-ZnO NCs were electrophoretically deposited onto an indium-tin-oxide (ITO) glass substrate and assessed for the electro-oxidation of AA by cyclic voltammetry (CV), and from this it was proven that bT-ZnO NCs had a very high electrochemical sensitivity of 29.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a primary cause of the COVID-19 pandemic. To date, various detection approaches are already present, and many other techniques are also being developed for the rapid and real-time detection of COVID-19 infection in the wake of this pandemic. Hence, this featured review will provide an overview of COVID-19, its biomarkers, current diagnostic techniques, and emerging smart nanomaterials-based biosensing approaches; apart from this, it will also extend some light on future perspectives of biosensing technologies for SARS-CoV-2 diagnosis.
View Article and Find Full Text PDFPeptide Nucleic Acid (PNA) are DNA/RNA synthetic analogs with 2-([2-aminoethyl] amino) acetic acid backbone. They partake unique antisense and antigene properties, just due to its inhibitory effect on transcription and translation; they also undergo complementary binding to RNA/DNA with high affinity and specificity. Hence, to date, many methods utilizing PNA for diagnosis and treatment of various diseases namely cancer, AIDS, human papillomavirus, and so on, have been designed and developed.
View Article and Find Full Text PDFNanotechnology is the branch of science which deals with particles ranging between 1-100 nm. These particles are called nanoparticles, and they exhibit unique electronic, optical, magnetic, and mechanical properties, which make them different from the bulk material. These properties of nanomaterials help them to find a variety of applications in the biomedical, agricultural, and environmental domains.
View Article and Find Full Text PDFIn this single case study, the possible effect of low-level laser therapy (LLLT) was explored in the form of light emitting diodes on a chronic non-healing wound of 6 months duration in an 18-year-old male patient suffering from thalassemia intermedia. After irradiation, with LLLT dosage of 17.3 J/cm(2) for 8 min for 2 weeks duration followed by proliferative dosage of 8.
View Article and Find Full Text PDFIntroduction: Injuries of articular cartilage (AC) have very limited potential to heal, because they are avascular and this may subsequently lead to secondary arthrosis. Autologous cultured chondrocytes transplantation is can be used to create hyaline or hyaline-like repair in a cartilage defect area. The purpose of this study was to repair artificially created full-thickness AC defects in 20 rabbit knee joints with autologous cultured chondrocytes.
View Article and Find Full Text PDF