Int J Biol Macromol
August 2025
Prostate-specific membrane antigen (PSMA), overexpressed in prostate cancer, is a promising target for diagnostics and therapy. However, the monoclonal antibodies in current use for PSMA targeting and inhibition have suboptimal activities due to their poor tissue and cell penetration and slow normal tissue clearance. Potentially superior alternatives are nanobodies (NBs), the single-chain variable domains of heavy-chain antibodies derived from camelids.
View Article and Find Full Text PDFNanoscale fabrication techniques have played an essential role in revealing the impact of extracellular matrix (ECM) nanotopography on cellular behavior. However, the mechanisms by which nanotopographical cues from the ECM influence cellular function remain unclear. To approach these questions, we have engineered a novel class of nanopatterned ECM constructs suitable for cryogenic electron tomography (cryo-ET), the highest resolution modality for imaging frozen hydrated cells in 3D.
View Article and Find Full Text PDFAmyloid-mediated catalysis of key biological reactions has recently attracted significant interest as this phenomenon may portend new functions for physiological and synthetic amyloid proteins. Here, we report an allosteric mechanism of catalytic amyloids, mediated via an unconventional coiled-coil fibril organization, facilitating hydrolysis of β-lactam antibiotics. Specifically, the hydrolysis reaction was catalyzed by a fibrillar peptide comprising alternating lysine/phenylalanine β-sheet-forming sequence.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
June 2025
The self-assembly of amphiphilic bottlebrush block copolymers (BCPs), featuring backbones densely grafted with two types of side chains, is less well understood compared to linear BCPs. In particular, the solution self-assembly of tapered bottlebrush BCPs-cone-shaped BCPs with hydrophilic or hydrophobic tips-remains unexplored. This study investigates eight tapered and four cylindrical bottlebrush BCPs with varied ratios of hydrophobic polystyrene (PS) and hydrophilic poly(acrylic acid) (PAA) side chains, synthesized via sequential addition of macromonomers using ring-opening metathesis polymerization (SAM-ROMP).
View Article and Find Full Text PDFThe ESCRT machinery mediates membrane remodeling in numerous processes in cells including cell division and nuclear membrane reformation. The identification of ESCRT homologs in Asgard archaea, currently considered the closest prokaryotic relative of eukaryotes, implies a role for ESCRTs in the membrane remodeling processes that occurred during eukaryogenesis. Yet, the function of these distant ESCRT homologs is mostly unresolved.
View Article and Find Full Text PDFThe quest to understand and mimic proton translocation mechanisms in natural channels has driven the development of peptide-based artificial channels facilitating efficient proton transport across nanometric membranes. It is demonstrated here that hierarchical peptide self-assembly can form micrometers-long proton nanochannels. The fourfold symmetrical peptide design leverages intermolecular aromatic interactions to align self-assembled cyclic peptide nanotubes, creating hydrophilic nanochannels between them.
View Article and Find Full Text PDFTailocins are phage tail-like bacteriocins produced by various bacterial species to kill kin competitors. Given that tailocin release is dependent upon cell lysis, regulation of tailocin production at the single-cell and population level remains unclear. Here we used flow cytometry, competition assays and structural characterization of tailocin production in a human bacterial pathogen, Listeria monocytogenes.
View Article and Find Full Text PDFThe swimming device of archaea-the archaellum-presents asparagine (N)-linked glycans. While N-glycosylation serves numerous roles in archaea, including enabling their survival in extreme environments, how this post-translational modification contributes to cell motility remains under-explored. Here, we report the cryo-EM structure of archaellum filaments from the haloarchaeon Halobacterium salinarum, where archaellins, the building blocks of the archaellum, are N-glycosylated, and the N-glycosylation pathway is well-resolved.
View Article and Find Full Text PDFThe interaction between nuclear receptor coactivator 4 (NCOA4) and the iron storage protein ferritin is a crucial component of cellular iron homeostasis. The binding of NCOA4 to the FTH1 subunits of ferritin initiates ferritinophagy-a ferritin-specific autophagic pathway leading to the release of the iron stored inside ferritin. The dysregulation of NCOA4 is associated with several diseases, including neurodegenerative disorders and cancer, highlighting the NCOA4-ferritin interface as a prime target for drug development.
View Article and Find Full Text PDFSecond mitochondrial-derived activator of caspase (SMAC), also known as direct inhibitor of apoptosis-binding proteins with low pI (Diablo), is known as a pro-apoptotic mitochondrial protein released into the cytosol in response to apoptotic signals. We recently reported SMAC overexpression in cancers as essential for cell proliferation and tumor growth due to non-apoptotic functions, including phospholipid synthesis regulation. These functions may be associated with its interactions with partner proteins.
View Article and Find Full Text PDFSeveral kinesin-5 motors (kinesin-5s) exhibit bidirectional motility. The mechanism of such motility remains unknown. Bidirectional kinesin-5s share a long N-terminal nonmotor domain (NTnmd), absent in exclusively plus-end-directed kinesins.
View Article and Find Full Text PDFWallerian axonal degeneration (WD) does not occur in the nematode C. elegans, in contrast to other model animals. However, WD depends on the NADase activity of SARM1, a protein that is also expressed in C.
View Article and Find Full Text PDFMicrobial taxonomy is critical for describing ecosystem composition, yet the link between taxonomy and properties of microbes, such as their cellular architecture, remains poorly defined. We hypothesized that the cellular architecture represents microbial niche adaptation. We used cryo-electron microscopy and tomography to analyze microbial morphology in order to associate cellular architecture with phylogeny and genomic contents.
View Article and Find Full Text PDFCell Mol Life Sci
December 2022
In recent years, there has been growing interest in SARM1 as a potential breakthrough drug target for treating various pathologies of axon degeneration. SARM1-mediated axon degeneration relies on its TIR domain NADase activity, but recent structural data suggest that the non-catalytic ARM domain could also serve as a pharmacological site as it has an allosteric inhibitory function. Here, we screened for synthetic small molecules that inhibit SARM1, and tested a selected set of these compounds in a DRG axon degeneration assay.
View Article and Find Full Text PDFHigh-resolution structures are crucial for understanding the functional properties of nanomaterials. We applied single-particle cryo-electron microscopy (cryo-EM), a method traditionally used for structure determination of biological macromolecules, to obtain high-resolution structures of synthetic non-biological filaments formed by photopolymerization of macrocyclic diacetylene (MDA) amphiphilic monomers. Tomographic analysis showed that the MDA monomers self-assemble into hollow nanotubes upon dispersion in water.
View Article and Find Full Text PDFImpaired mitochondrial function has been proposed as a causative factor in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), caused by motor neuron degeneration. Mutations in superoxide dismutase (SOD1) cause ALS and SOD1 mutants were shown to interact with the voltage-dependent anion channel 1 (VDAC1), affecting its normal function. VDAC1 is a multi-functional channel located at the outer mitochondrial membrane that serves as a mitochondrial gatekeeper controlling metabolic and energetic crosstalk between mitochondria and the rest of the cell and it is a key player in mitochondria-mediated apoptosis.
View Article and Find Full Text PDFWe report a new type of nanoparticle, consisting of a nucleic acid core (>7500 nt) folded into a 35 nm DNA origami sphere, encapsulated by a capsid composed of all three SV40 virus capsid proteins. Compared to the prototype reported previously, whose capsid consists of VP1 only, the new nanoparticle closely adopts the unique intracellular pathway of the native SV40, suggesting that the proteins of the synthetic capsid retain their native viral functionality. Some of the challenges in the design of such near-future composite drugs destined for gene delivery are discussed.
View Article and Find Full Text PDFActa Neuropathol Commun
November 2021
The type 1 ryanodine receptor (RyR1) is an intracellular calcium (Ca) release channel on the sarcoplasmic/endoplasmic reticulum that is required for skeletal muscle contraction. RyR1 channel activity is modulated by ligands, including the activators Ca and ATP. Patients with inherited mutations in RyR1 may exhibit muscle weakness as part of a heterogeneous, complex disorder known as RYR1-related myopathy (RYR1-RM) or more recently termed RYR1-related disorders (RYR1-RD).
View Article and Find Full Text PDF-Adenosylmethionine lyase (SAMase) of bacteriophage T3 degrades the intracellular SAM pools of the host Escherichia coli cells, thereby inactivating a crucial metabolite involved in a plethora of cellular functions, including DNA methylation. SAMase is the first viral protein expressed upon infection, and its activity prevents methylation of the T3 genome. Maintenance of the phage genome in a fully unmethylated state has a profound effect on the infection strategy.
View Article and Find Full Text PDFTubulin, an essential cytoskeletal protein, assembles into various morphologies by interacting with an array of cellular factors. One of these factors is the endogenous polyamine spermine, which may promote and stabilize tubulin assemblies. Nevertheless, the assembled structures and their formation pathways are poorly known.
View Article and Find Full Text PDFSMAC/Diablo, a pro-apoptotic protein, yet it is overexpressed in several cancer types. We have described a noncanonical function for SMAC/Diablo as a regulator of lipid synthesis during cancer cell proliferation and development. Here, we explore the molecular mechanism through which SMAC/Diablo regulates phospholipid synthesis.
View Article and Find Full Text PDFSARM1, an executor of axonal degeneration, displays NADase activity that depletes the key cellular metabolite, NAD+, in response to nerve injury. The basis of SARM1 inhibition and its activation under stress conditions are still unknown. Here, we present cryo-EM maps of SARM1 at 2.
View Article and Find Full Text PDFBiomineralization is mediated by specialized proteins that guide and control mineral sedimentation. In many cases, the active regions of these biomineralization proteins are intrinsically disordered. High-resolution structures of these proteins while they interact with minerals are essential for understanding biomineralization processes and the function of intrinsically disordered proteins (IDPs).
View Article and Find Full Text PDF