98%
921
2 minutes
20
Nanoscale fabrication techniques have played an essential role in revealing the impact of extracellular matrix (ECM) nanotopography on cellular behavior. However, the mechanisms by which nanotopographical cues from the ECM influence cellular function remain unclear. To approach these questions, we have engineered a novel class of nanopatterned ECM constructs suitable for cryogenic electron tomography (cryo-ET), the highest resolution modality for imaging frozen hydrated cells in 3D. We electrospun aligned and randomly oriented ECM fibers directly onto transmission electron microscopy (TEM) supports to generate fibrous scaffolds that mimic physiological ECM in healthy (organized ECM) and diseased (disorganized ECM) states. We produced fibers from gelatin without toxic additives and cross-linked them to maintain structural stability in aqueous environments. The electrospun fibers had an average fiber diameter of hundreds of nanometers. We confirmed that the nanopatterned TEM supports can serve as viable cell culture substrates that can influence cell organization and demonstrated their compatibility with plunge freezing and cryo-ET. By enabling nanoscale structural analysis inside cells on substrates with programmable topographies, this platform can be used to study the physical cues necessary for healthy endothelial tissue formation and pathologies that are linked to endothelial dysfunction in diseases such as peripheral arterial disease.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d4nr05508j | DOI Listing |
Proc Natl Acad Sci U S A
September 2025
Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202.
Retinal ganglion cells (RGCs) are highly compartmentalized neurons whose long axons serve as the sole connection between the eye and the brain. In both injury and disease, RGC degeneration occurs in a similarly compartmentalized manner, with distinct molecular and cellular responses in the axonal and somatodendritic regions. The goal of this study was to establish a microfluidic-based platform to investigate RGC compartmentalization in both health and disease states.
View Article and Find Full Text PDFAppl Biochem Biotechnol
September 2025
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
Marine-derived enzymes often show distinct physiological properties and great potential for industrial use. Salt ions may improve the stability and expression efficiency of marine enzymes, which requires salt-resistant host based expression platform. Aspergillus oryzae of good protein expression and secretion was evaluated and explored for this purpose.
View Article and Find Full Text PDFInt J Clin Pharm
September 2025
Heidelberg University, Medical Faculty Heidelberg / Heidelberg University Hospital, Internal Medicine IX - Department of Clinical Pharmacology and Pharmacoepidemiology, Cooperation Unit Clinical Pharmacy, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
Introduction: Medication history taking at hospital admission is still prone to errors. Despite numerous quality improvement initiatives, new strategies to improve medication history taking are still sought and evaluated. Unfortunately, the gold standard research methodology for evaluation is resource-intensive, as it requires each patient to complete two medication history interviews.
View Article and Find Full Text PDFMol Biol Rep
September 2025
Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
Background: Colorectal cancer (CRC) remains one of the leading causes of cancer-related mortality worldwide. The tumor microenvironment (TME), particularly the interactions between endothelial cells and cancer-associated fibroblasts (CAFs), plays a pivotal role in promoting tumor growth, angiogenesis, oxidative stress, and therapy resistance. The HUVEC-fibroblast co-culture model closely mimics stromal-endothelial interactions observed in CRC, enabling mechanistic insights not achievable in monocultures.
View Article and Find Full Text PDFHernia
September 2025
Center for Perioperative Optimization, Department of Surgery, Copenhagen University Hospital - Herlev and Gentofte, Borgmester Ib Juuls Vej 1, Herlev, DK-2730, Denmark.
Purpose: Primary ventral hernia repair is a common elective procedure; however, mesh placement practices vary widely, and there is limited evidence to guide optimal placement. This international study examined surgeons' preferences and considerations regarding mesh placement in elective primary ventral hernia repair.
Methods: We conducted an international cross-sectional survey targeting surgeons experienced in primary ventral hernia repair.