Zinc is an essential trace element vital for cellular function, and its homeostasis is tightly regulated. ZnT1, a cation diffusion facilitator (CDF) family member, extrudes excess zinc across the mammalian plasma membrane, making it a major part of the zinc homeostasis system. While ZnT1 shares structural similarities with other CDF proteins, the role of its C-terminal domain (CTD) in zinc transport remains unclear.
View Article and Find Full Text PDFAmyloid-mediated catalysis of key biological reactions has recently attracted significant interest as this phenomenon may portend new functions for physiological and synthetic amyloid proteins. Here, we report an allosteric mechanism of catalytic amyloids, mediated via an unconventional coiled-coil fibril organization, facilitating hydrolysis of β-lactam antibiotics. Specifically, the hydrolysis reaction was catalyzed by a fibrillar peptide comprising alternating lysine/phenylalanine β-sheet-forming sequence.
View Article and Find Full Text PDFStaphylococcus aureus is a major cause of infections like bacteremia, pneumonia, and endocarditis. These infections are often linked to the ability of S. aureus to form biofilms.
View Article and Find Full Text PDFJ Chem Theory Comput
September 2024
A major challenge in computer-aided drug design is predicting relative binding energies of different molecules to a target protein using fast and accurate free-energy calculation methods. Free-energy calculations are primarily computed by utilizing classical molecular dynamics simulations based on all-atom force fields (FF) to model the interactions in the system. The present standard classical all-atom FFs contain fixed partial charges on the atoms, and hence electrostatic interactions are modeled between them.
View Article and Find Full Text PDFCoassembly of peptide biomaterials offers a compelling avenue to broaden the spectrum of hierarchically ordered supramolecular nanoscale structures that may be relevant for biomedical and biotechnological applications. In this work coassemblies of amphiphilic and oppositely charged, anionic and cationic, β-sheet peptides are studied, which may give rise to a diverse range of coassembled forms. Mixtures of the peptides show significantly lower critical coassembly concentration (CCC) values compared to those of the individual pure peptides.
View Article and Find Full Text PDFWe have successfully created self-assembled membranes by combining positively charged (Pro-X-(Phe-X)-Pro) PFX peptides with negatively charged alginate. These PFX/alginate membranes were formed by three different peptides that contain either X = Arginine (R), Histidine (H), or Ornithine (O) as their charged amino acid. The assemblies were compared to membranes that were previously reported by us composed of X = lysine (K).
View Article and Find Full Text PDFSeveral kinesin-5 motors (kinesin-5s) exhibit bidirectional motility. The mechanism of such motility remains unknown. Bidirectional kinesin-5s share a long N-terminal nonmotor domain (NTnmd), absent in exclusively plus-end-directed kinesins.
View Article and Find Full Text PDFThe metal-dependent M17 aminopeptidases are conserved throughout all kingdoms of life. This large enzyme family is characterized by a conserved binuclear metal center and a distinctive homohexameric arrangement. Recently, we showed that hexamer formation in Plasmodium M17 aminopeptidases was controlled by the metal ion environment, although the functional necessity for hexamer formation is still unclear.
View Article and Find Full Text PDFIn this study, we analyzed intracellular functions and motile properties of neck-linker (NL) variants of the bi-directional kinesin-5 motor, Cin8. We also examined - by modeling - the configuration of H-bonds during NL docking. Decreasing the number of stabilizing H-bonds resulted in partially functional variants, as long as a conserved backbone H-bond at the N-latch position (proposed to stabilize the docked conformation of the NL) remained intact.
View Article and Find Full Text PDFAbacavir is an antiretroviral drug used to reduce human immunodeficiency virus (HIV) replication and decrease the risk of developing acquired immune deficiency syndrome (AIDS). However, its therapeutic value is diminished by the fact that it is associated with drug hypersensitivity reactions in up to 8% of treated patients. This hypersensitivity is strongly associated with patients carrying human leukocyte antigen (HLA)-B*57:01, but not patients carrying closely related alleles.
View Article and Find Full Text PDFSerine proteinase inhibitors (serpins), typically fold to a metastable native state and undergo a major conformational change in order to inhibit target proteases. However, conformational lability of the native serpin fold renders them susceptible to misfolding and aggregation, and underlies misfolding diseases such as α-antitrypsin deficiency. Serpin specificity towards its protease target is dictated by its flexible and solvent exposed reactive centre loop (RCL), which forms the initial interaction with the target protease during inhibition.
View Article and Find Full Text PDFCation diffusion facilitator (CDF) proteins are a conserved family of transmembrane transporters that ensure cellular homeostasis of divalent transition metal cations. Metal cations bind to CDF protein's cytoplasmic C-terminal domain (CTD), leading to closure from its apo open V-shaped dimer to a tighter packed structure, followed by a conformational change of the transmembrane domain, thus enabling transport of the metal cation. By implementing a comprehensive range of biochemical and biophysical methods, we studied the molecular mechanism of metal binding to the magnetotactic bacterial CDF protein MamM CTD.
View Article and Find Full Text PDFThe M1 metallo-aminopeptidase from Plasmodium falciparum, PfA-M1, is an attractive drug target for the design of new antimalarials. Bestatin, a broad-spectrum metalloprotease inhibitor, is a moderate inhibitor of PfA-M1, and has been used to provide structure-activity relationships to inform drug design. The crystal structure of PfA-M1 with bestatin bound within its active site has been determined; however, dynamics of the inhibitor and the association or dissociation pathway have yet to be characterized.
View Article and Find Full Text PDFCanonical mechanisms of protein evolution include the duplication and diversification of pre-existing folds through genetic alterations that include point mutations, insertions, deletions, and copy number amplifications, as well as post-translational modifications that modify processes such as folding efficiency and cellular localization. Following a survey of the human mutation database, we have identified an additional mechanism that we term "structural capacitance," which results in the de novo generation of microstructure in previously disordered regions. We suggest that the potential for structural capacitance confers select proteins with the capacity to evolve over rapid timescales, facilitating saltatory evolution as opposed to gradualistic canonical Darwinian mechanisms.
View Article and Find Full Text PDFJ Biomol Struct Dyn
August 2018
The M1 and M17 aminopeptidases are metallo-exopeptidases that rely on the presence of divalent cations, usually zinc, in their active site for proteolytic activity. They are from separate protease superfamilies, however, members often have overlapping substrate specificity. Inhibitors of one or both enzymes can be used to modulate hypertension, reduce proliferation of certain types of cancers and control malaria parasites.
View Article and Find Full Text PDFThe rugged folding landscapes of functional proteins puts them at risk of misfolding and aggregation. Serine protease inhibitors, or serpins, are paradigms for this delicate balance between function and misfolding. Serpins exist in a metastable state that undergoes a major conformational change in order to inhibit proteases.
View Article and Find Full Text PDFCation diffusion facilitators (CDF) are highly conserved, metal ion efflux transporters that maintain divalent transition metal cation homeostasis. Most CDF proteins contain two domains, the cation transporting transmembrane domain and the regulatory cytoplasmic C-terminal domain (CTD). MamM is a magnetosome-associated CDF protein essential for the biomineralization of magnetic iron-oxide particles in magnetotactic bacteria.
View Article and Find Full Text PDFThyroid peroxidase (TPO) catalyses the biosynthesis of thyroid hormones and is a major autoantigen in Hashimoto's disease--the most common organ-specific autoimmune disease. Epitope mapping studies have shown that the autoimmune response to TPO is directed mainly at two surface regions on the molecule: immunodominant regions A and B (IDR-A, and IDR-B). TPO has been a major target for structural studies for over 20 years; however, to date, the structure of TPO remains to be determined.
View Article and Find Full Text PDFThe growing problem of antibiotic resistance underlies the critical need to develop new treatments to prevent and control resistant bacterial infection. Exogenous application of bacteriophage lysins results in rapid and specific destruction of Gram-positive bacteria and therefore lysins represent novel antibacterial agents. The PlyC phage lysin is the most potent lysin characterized to date and can rapidly lyse Group A, C and E streptococci.
View Article and Find Full Text PDFTrends Immunol
December 2014
Dynamics plays an important but underappreciated role in the interaction between the T cell receptor (TCR) and peptide-bound major histocompatibility complex (pMHC). Crystallographic studies have provided key molecular insights into this interaction; however, due to inherent features of the structural approach, the image of TCR-pMHC interactions that has emerged is a static one. In this review, we discuss how molecular dynamics (MD) simulations can complement and extend current experimental methods aimed at examining TCR-pMHC dynamics.
View Article and Find Full Text PDFApical membrane antigen 1 (AMA1) interacts with RON2 to form a protein complex that plays a key role in the invasion of host cells by malaria parasites. Blocking this protein-protein interaction represents a potential route to controlling malaria and related parasitic diseases, but the polymorphic nature of AMA1 has proven to be a major challenge to vaccine-induced antibodies and peptide inhibitors exerting strain-transcending inhibitory effects. Here we present the X-ray crystal structure of AMA1 domains I and II from Plasmodium falciparum strain FVO.
View Article and Find Full Text PDFGlyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a ubiquitous and abundant protein that participates in cellular energy production. GAPDH normally exists in a soluble form; however, following necrosis, GAPDH and numerous other intracellular proteins convert into an insoluble disulfide-cross-linked state via the process of "nucleocytoplasmic coagulation." Here, free radical-induced aggregation of GAPDH was studied as an in vitro model of nucleocytoplasmic coagulation.
View Article and Find Full Text PDFThe human neuroendocrine enzyme glutamate decarboxylase (GAD) catalyses the synthesis of the inhibitory neurotransmitter gamma-aminobutyric acid (GABA) using pyridoxal 5'-phosphate as a cofactor. GAD exists as two isoforms named according to their respective molecular weights: GAD65 and GAD67. Although cytosolic GAD67 is typically saturated with the cofactor (holoGAD67) and constitutively active to produce basal levels of GABA, the membrane-associated GAD65 exists mainly as the inactive apo form.
View Article and Find Full Text PDF