Due to the poor regeneration ability of cartilage tissue, the design and fabrication of permanent hydrogel cartilage scaffolds with mechanical properties matching is still an urgent challenge. In this study, we propose an "inner swelling-outer restraint" strategy to construct Janus hydrogel for pressure-bearing cartilage replacement, which is inspired by the "Lamina-splendens" structure of cartilage. As a proof of concept, the poly(vinyl alcohol)/carboxymethyl cellulose sodium (PVA/CMCNa) layer is designed to capture more fluid by introducing negatively charged aggregates, while the macromolecular conformation of the PVA/MoS layer can be densified through wet annealing, thereby increasing the liquid permeation resistance of the PVA/CMCNa layer.
View Article and Find Full Text PDF3D cartilage tissue engineering scaffolds with stable structures are crucial for promoting cartilage tissue growth and repair. However, limited research attention is given to the effects of 3D cells-membrane-cells sandwich-like living complexes with enhanced structural stability for cartilage repair. In this study, silk fibroin/graphene oxide@kartogenin (SF/GO@KGN) fibrous membranes with improved structural stability are developed through the regulation of the crystallinity, and living complexes are constructed for cartilage repair using rat bone marrow stromal cells (rBMSCs) and the SF/GO@KGN fibrous membranes.
View Article and Find Full Text PDFBacterial resistance and biofilm formation around diabetic wounds are major challenges that make the wounds difficult to heal. It is crucial for diabetic wound healing to improve the microenvironment around the wounds. In this study, a novel strategy for diabetic wound healing is developed by combining the peroxidase (POD)-like enzyme activity and photothermal therapy (PTT) to protect against bacterial infections around the wounds.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
The preparation of biodegradable and antibacterial hydrogels has important clinical value. In this work, a novel strategy has been developed to prepare degradable hydrogel dressings without chemical crosslinking agent using methacrylate anhydride (MA)-modified amylopectin (APMA) and polyacrylamide (PAM). After introducing CC bonds, APMA/PAM hydrogels can be formed under light irradiation.
View Article and Find Full Text PDFThe kind of compounding emulsifier used and the amount of compounding have a significant impact on the emulsion's stability. In this study, the average particle size, Zeta potential, emulsification index, laser confocal microstructure, and rheological properties shows that the ratio of monoglyceride-xanthan gum and sucrose ester-xanthan gum could maintain the good stability of the emulsion in a certain range, and the monoglyceride and sucrose ester compounding could effectively improve the stability of the emulsion in a specific ratio (7:3). The results of fluorescence spectroscopy, Fourier transform infrared spectroscopy and sodium dodecyl sulfate polyacrylamide gel electrophoresis indicated that the simultaneous complexation of three substances was more likely to produce hydrophobic interactions with walnut proteins than the simultaneous complexation of two substances.
View Article and Find Full Text PDFWalnuts are high in protein content and rich in nutrients and are susceptible to oxidation during production and processing, leading to a decrease in the stability of walnut protein emulsions. In this paper, the effect of alkyl peroxyl radical oxidation on the stability of walnut protein emulsions is investigated. With the increase of 2,2-azobis (2-methylpropionamidine) dihydrochloride (AAPH) concentration, both its protein and fat were oxidized to different degrees, and the droplets of the emulsion were first dispersed and then aggregated as seen from the laser confocal, and the stability of walnut protein emulsion was best at the AAPH concentration of 0.
View Article and Find Full Text PDFInt J Biol Macromol
March 2024
The stability of food emulsions is the basis for other properties. During their production and processing, emulsions tend to become unstable due to their thermodynamic instability, and it is usually necessary to add emulsifiers and proteins to stabilize emulsions. It becomes crucial to study the intrinsic mechanisms of emulsifiers and proteins and their joint stabilization of food emulsions.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2023
Copper-based antibacterial materials have emerged as a potential alternative for combating bacterial infections, which continue to pose significant health risks. Nevertheless, the use of copper-based nanoparticles as antibacterial agents has faced challenges due to their toxicity towards cells and tissues. To overcome this obstacle, we propose a new approach using a contact-active copper-based nanoparticles called polydopamine (PDA)-coated copper-amine (Cuf-TMB@PDA).
View Article and Find Full Text PDFJ Sci Food Agric
March 2024
Background: Single emulsifiers have an effect on the stability of plant protein drinks, giving some improvement. Emulsifiers are more effective in maintaining emulsion stability when combined with polysaccharides such as xanthan gum. In this paper, we studied the food-grade emulsifier sucrose ester and measured the average particle size, polydispersity value, zeta potential, microrheological properties, microstructure and creaming index related to walnut protein emulsion by constructing a walnut protein emulsion simulation system.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2023
Fenton-like radical processes are widely utilized to explain catalytic mechanisms of peroxidase-like nanozymes, which exhibit remarkable catalytic activity, cost-effectiveness, and stability. However, there is still a need for a comprehensive understanding of the formation, stabilization, and transformation of such radicals. Herein, a copper formate-based nanozyme (Cuf-TMB) was fabricated a pre-catalytic strategy under ambient conditions.
View Article and Find Full Text PDFBackground: Walnut kernels are high in polyphenols (PPs), which cause low protein solubility, limiting the use of walnut protein in the food industry. To obtain the best technical parameters of the dephenolization treatment, the defatted walnut powder was dephenolized using ultrasound-assisted ethanol extraction (UAE), and the response surface optimization was performed on the basis of single factor. On this basis, the effects of dephenolization on the solubility, emulsifying properties and foaming properties of walnut protein isolates (WPIs) were compared to those of defatted walnut powder without dephenolization.
View Article and Find Full Text PDFWalnuts are rich in fat and proteins that become oxidized during the processing and storage conditions of their kernels. In this study, the effect of three packaging materials (e.g.
View Article and Find Full Text PDFWalnut protein is a key plant protein resource due to its high nutritional value, but walnuts are prone to oxidation during storage and processing. This article explored the oxidative modification and digestion mechanism of walnut protein isolates by peroxyl radical and obtained new findings. SDS-PAGE and spectral analysis were used to identify structural changes in the protein after oxidative modification, and LC-MS/MS was used to identify the digestion products.
View Article and Find Full Text PDFWalnut protein isolate (WPI) was hydrolyzed using Alcalase for 0, 30, 60, 90, 120 and 150 min to investigate the effect of different hydrolysis times on the structure and antioxidant properties of walnut proteins. The identified peptides HADMVFY, NHCQYYL, NLFHKRP and PSYQPTP were used to investigate the structure-activity relationship by using LC-MS/MS and molecular docking. The kinetic equations DH = 3.
View Article and Find Full Text PDFA nature-inspired strategy has been developed to prepare polyvinyl alcohol (PVA)/catechol-modified quaternized chitosan (QCS-C)/MXene hydrogels with good self-adhesion, frost-resistance, and high ion-conductivity. The PVA/QCS-C/MXene hydrogel shows an ionic conductivity of 8.82 S m and a gauge factor of 33.
View Article and Find Full Text PDFPoly (ether-ether-ketone) (PEEK) displays promising potential application in bone tissue repair and orthopedic surgery due to its good biocompatibility and chemical stability. However, the bio-inertness and poor mechanical strength of PEEK greatly limit its application in load-bearing bones. In this study, calcium silicate whiskers (CSws) are synthesized and then compounded with PEEK to fabricate the PEEK/CSw composites with excellent mechanical properties, biological activity.
View Article and Find Full Text PDF(1) Background: The effects of protein oxidization induced by malondialdehyde (MDA), which was selected as a representative of lipid peroxidation products, on the structure and functional properties of walnut protein were investigated. (2) Methods: Walnut protein isolate was produced by alkali-soluble acid precipitation. The modification of walnut protein isolate was conducted by MDA solutions (0, 0.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2022
Systemic administration of immune checkpoint blockade agents can activate the anticancer activity of immune cells; however, the response varies from patient to patient and presents potential off-target toxicities. Local administration of immune checkpoint inhibitors (ICIs) can maximize therapeutic efficacies while reducing side effects. This study demonstrates a minimally invasive strategy to locally deliver anti-programmed cell death protein 1 (anti-PD-1) with shear-thinning biomaterials (STBs).
View Article and Find Full Text PDFJ Appl Microbiol
August 2022
Aims: To evaluate changes in short-chain fatty acid levels and G protein-coupled receptor 43 expression and distribution in gut microbiota and explore their relationships in obese diabetic mice after sleeve gastrectomy.
Methods And Results: Diet-induced obese mice and obese diabetic ob/ob mice were established. Changes in glucose metabolism, lipid metabolism, gut microbiota, metabolite short-chain fatty acids, and G protein-coupled receptor 43 expressions were assessed in both models 10 weeks postoperatively.
J Mech Behav Biomed Mater
December 2021
The control of interfacial interaction between polymers and fillers is essential for the fabrication of high-performance polymer composites. In this work, poly(ether-ether-ketone)/silica (PEEK/SiO) and PEEK/SiO/graphene oxide (GO) composite were prepared by ball milling-ultrasonic dispersion combined with melt extrusion injection molding. GO nanosheets were introduced as the interfacial enhancer to improve interfacial binding between SiO and PEEK.
View Article and Find Full Text PDFA chickpea protein isolate (CPI) was oxidized using peroxyl radicals derived from 2,2'-azobis (2-amidopropane) dihydrochloride (AAPH), and the structural and foaming properties of the oxidized CPI were evaluated. The oxidation degree of protein was determined by measuring carbonyl content, dimer tyrosine content, free thiol content, and total thiol content. The structural changes of oxidized protein were evaluated by surface hydrophobicity, endogenous fluorescence intensity, Fourier transform infrared spectroscopy, SDS-PAGE, and amino acid content changes.
View Article and Find Full Text PDFCancer immunotherapies, including immune checkpoint inhibitor (ICI)-based therapies, have revolutionized cancer treatment. However, patient response to ICIs is highly variable, necessitating the development of methods to quickly assess efficacy. In this study, an array of miniaturized bioreactors has been developed to model tumor-immune interactions.
View Article and Find Full Text PDF