Publications by authors named "Qingyi Xiang"

China's "three-child policy", implemented in response to population aging, has made the protection of maternal and infant health an urgent priority. In this environmental and medical big-data era, the Zhejiang Environmental and Birth Health Research Alliance (ZEBRA) maternity cohort was established with the aim of identifying risk factors for perinatal morbidity and mortality from the perspectives of both observational epidemiology and experimental etiology. Compared with conventional birth cohorts, the inclusion of a maternity cohort allows greater scope for research and places an emphasis on maternal health.

View Article and Find Full Text PDF

Intrahepatic cholestasis of pregnancy (ICP) is an idiopathic disease that occurs during mid-to-late pregnancy and is associated with various adverse pregnancy outcomes, including intrauterine fetal demise. However, since the underlying cause of ICP remains unclear, there is an ongoing debate on the phenotyping criteria used in the diagnostic process. Here, we identified single- and multi-symptomatic ICP (ICP-S and ICP-M) in 104,221 Chinese females from the ZEBRA maternity cohort, with the objective of exploring the risk implications of the two phenotypes on pregnancy outcomes and from environmental exposures.

View Article and Find Full Text PDF

Unlabelled: Antibiotic application during the perinatal period is unavoidable in the clinic, but the potential effects on mothers and infants remain unknown. Herein, 25 breast milk samples from mothers who received cefuroxime (CXM) or CXM + cefoxitin (CFX) treatments and fecal samples from their infants were collected to investigate the undesirable effects of antibiotics on the microbiota of mothers and neonates. Furthermore, five fecal samples of infants, whose mothers had antibiotic treatments, were collected at a 6-month postpartum follow-up visit to evaluate the long-term effects on infants' gut microbiota.

View Article and Find Full Text PDF

Purpose: This study aimed to explore the role of the protein kinase A (PKA) pathway in proliferative vitreoretinopathy (PVR) and the effect of the PKA inhibitor H89 on experimental PVR.

Methods: Epiretinal membranes (ERMs) were acquired from PVR patients and analyzed by frozen-section immunofluorescence. An in vivo model was developed by intravitreal injecting rat eyes with ARPE-19 cells and platelet-rich plasma, and changes in eye structures and vision function were observed.

View Article and Find Full Text PDF

The quantum well (QW) realizes new functionalities due to the discrete electronic energy levels formed in the well-shaped potential. Magnetic tunnel junctions (MTJs) combined with a quasi-QW structure of Cr/ultrathin-Fe/MgAlO(001)/Fe, in which the Cr quasi-barrier layer confines up-spin electrons to the Fe well, are prepared with perfectly lattice-matched interfaces and atomic layer number control. Resonant peaks are clearly observed in the differential conductance of the MTJs due to the formation of QWs.

View Article and Find Full Text PDF

SnSe nanocrystal electrodes on three-dimensional (3D) carbon fabric and Au-coated polyethylene terephthalate (PET) wafer have been prepared by a simple spray-painting process and were further investigated as binder-free active-electrodes for Lithium-ion batteries (LIBs) and flexible stacked all-solid-state supercapacitors. The as-painted SnSe nanocrystals/carbon fabric electrodes exhibit an outstanding capacity of 676 mAh g(-1) after 80 cycles at a current density of 200 mA g(-1) and a considerable high-rate capability in lithium storage because of the excellent ion transport from the electrolyte to the active materials and the efficient charge transport between current collector and electrode materials. The binder-free electrodes also provide a larger electrochemical active surface compared with electrodes containing binders, which leads to the enhanced capacities of energy-storage devices.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers created a novel ZnCo2O4/nickel foam structure that shows impressive electrochemical performance for supercapacitors, achieving around 1400 F g(-1) specific capacitance at low current and retaining 72.5% capacity at high current.
  • The structures also demonstrated great longevity, with only a 3% decrease in performance after 1000 charge-discharge cycles.
  • These findings suggest that the developed architectures can effectively be used in both high energy and high power applications, including electric vehicles and energy storage devices.
View Article and Find Full Text PDF

Anatase TiO2 modified FeS nanowires assembled by numerous nanosheets were synthesized by using a typical hydrothermal method. The carbon-free nanocoated composite electrodes exhibit improved reversible capacity of 510 mAh g(-1) after 100 discharge/charge cycles at 200 mA g(-1), much higher than that of the pristine FeS nanostructures, and long-term cycling stability with little performance degradation even after 500 discharge/charge cycles at current density of 400 mA g(-1). Full batteries fabricated using the FeS@TiO2 nanostructures anode and the LiMn2O4 nanowires cathode with excellent stability, and good rate capacities could also be achieved.

View Article and Find Full Text PDF

Aligned Ca2Ge7O16 nanowire arrays were successfully grown on carbon textiles to form hierarchical 3D structures by using a facile hydrothermal method on a large scale. Typical Ca2Ge7O16 nanowires are single crystals that show preferred growth along the [001] direction. The 3D hierarchical structures were used as binder-free anodes for lithium-ion batteries, which showed the features of highly reversible capacity (900-1100 mA h g(-1) at a current density of 300 mA g(-1)), remarkable cycling stability, even over 100 cycles, and good rate capability, with a capacity of about 500 mA h g(-1) at 3 A g(-1).

View Article and Find Full Text PDF

We have successfully fabricated flexible asymmetric supercapacitors (ASCs) based on acicular Co9S8 nanorod arrays as positive materials and Co3O4@RuO2 nanosheet arrays as negative materials on woven carbon fabrics. Co9S8 nanorod arrays were synthesized by a hydrothermal sulfuration treatment of acicular Co3O4 nanorod arrays, while the RuO2 was directly deposited on the Co3O4 nanorod arrays. Carbon cloth was selected as both the substrate and the current collector for its good conductivity, high flexibility, good physical strength, and lightweight architecture.

View Article and Find Full Text PDF