Publications by authors named "Patricia Baldrich"

PhasiRNAs (phased small interfering RNAs) are a major class of plant small RNAs (sRNA) known to be key regulators in male reproductive development of maize (Zea mays) and rice (Oryza sativa), among other plants. Earlier research focused primarily on premeiotic 21-nucleotide (nt) phasiRNAs and meiotic 24-nt phasiRNAs, while new studies uncovered a premeiotic class of 24-nt phasiRNAs. The biogenesis and function of these phasiRNAs remain unclear.

View Article and Find Full Text PDF

An unwelcoming climate and culture at scientific conferences is an obstacle to retaining scientists with marginalized identities. Here we describe how a number of professional societies in the plant sciences, mostly based in the United States, collaborated on a project called ROOT & SHOOT (short for Rooting Out Oppression Together and SHaring Our Outcomes Transparently) to make conferences in the field more inclusive. The guidelines we developed, and our efforts to implement them in 2023 and 2024, are summarized here to assist other conference organizers with creating more inclusive conferences.

View Article and Find Full Text PDF

The Soybean- symbiosis enables symbiotic nitrogen fixation (SNF) within root nodules, reducing reliance on synthetic N-fertilizers. However, nitrogen fixation is transient, peaking several weeks after colonization and declining as nodules senesce in coordination with host development. To investigate the regulatory mechanisms governing SNF and senescence, we conducted a temporal transcriptomic analysis of soybean nodules colonized with USDA110.

View Article and Find Full Text PDF
Article Synopsis
  • Transgenic plants can express double-stranded RNA that silences mRNAs in fungal pathogens, but how this RNA crosses cell membranes during infection is unclear.
  • A new protocol allowed researchers to isolate RNA from the leaf surface, revealing a unique pattern distinct from intercellular RNA, suggesting it might be secreted directly rather than through stomata.
  • The isolated surface RNAs, primarily from Arabidopsis and including various RNA types, may play a vital role in establishing microbial communities on leaf surfaces.
View Article and Find Full Text PDF

After having co-existed in plant genomes for at least 200 million years, the products of microRNA (miRNA) and nucleotide-binding leucine-rich repeat protein (NLR) genes formed a regulatory relationship in the common ancestor of modern gymnosperms and angiosperms. From then on, DNA polymorphisms occurring at miRNA target sequences within NLR transcripts must have been compensated by mutations in the corresponding mature miRNA sequence. The potential evolutionary advantage of such regulation remains largely unknown and might be related to two nonexclusive scenarios: (i) miRNA-dependent regulation of NLR levels might prevent defense mis-activation with negative effects on plant growth and reproduction or (ii) reduction of active miRNA levels in response to pathogen-derived molecules (pathogen-associated molecular patterns [PAMPs] and silencing suppressors) might rapidly release otherwise silent NLR transcripts for rapid translation and thereby enhance defense.

View Article and Find Full Text PDF
Article Synopsis
  • Noncoding and coding RNAs play crucial roles in the growth, development, and stress responses of plants, particularly during the transition from vegetative to reproductive stages in Coffea arabica.
  • Researchers sequenced small RNA libraries and combined this data with messenger RNA sequencing to identify different transcript types at key developmental stages.
  • The analysis revealed that various small RNAs accumulate in a stage-specific manner, with particular emphasis on miRNAs and their association with hormonal responses and transcription factor expression during floral development.
View Article and Find Full Text PDF

In , ARGONAUTE1 (AGO1) plays a central role in microRNA (miRNA) and small interfering RNA (siRNA)-mediated silencing. AGO1 associates to the rough endoplasmic reticulum to conduct miRNA-mediated translational repression, mRNA cleavage, and biogenesis of phased siRNAs. Here, we show that a 37°C heat stress (HS) promotes AGO1 protein accumulation in cytosolic condensates where it colocalizes with components of siRNA bodies and of stress granules.

View Article and Find Full Text PDF

Hybrid breeding for increased vigour has been used for over a century to boost agricultural outputs without requiring higher inputs. While this approach has led to some of the most substantial gains in crop productivity, breeding barriers have fundamentally limited soybean (Glycine max) from reaping the benefits of hybrid vigour. Soybean flowers self-pollinate prior to opening and thus are not readily amenable to outcrossing.

View Article and Find Full Text PDF
Article Synopsis
  • Small RNAs like miRNAs and hc-siRNAs play a crucial role in gene regulation and were explored in the context of two potato cultivars, Desiree and Eva.
  • The study established a small RNA expression atlas across various potato tissues (leaves, flowers, roots, and tubers) and found that most small RNAs were conserved between the cultivars, suggesting a low evolutionary rate.
  • Some miRNAs displayed differences in accumulation between cultivars, and certain hc-siRNAs showed tissue-specific expression, highlighting the complexity of small RNA regulation in potatoes.
View Article and Find Full Text PDF

The Solanaceae or "nightshade" family is an economically important group with remarkable diversity. To gain a better understanding of how the unique biology of the Solanaceae relates to the family's small RNA (sRNA) genomic landscape, we downloaded over 255 publicly available sRNA data sets that comprise over 2.6 billion reads of sequence data.

View Article and Find Full Text PDF

RNA silencing is a conserved mechanism in eukaryotes involved in development and defense against viruses. In plants, ARGONAUTE1 (AGO1) protein plays a central role in both microRNA- and small interfering RNA-directed silencing, and its expression is regulated at multiple levels. Here, we report that the F-box protein FBW2 assembles an SCF complex that selectively targets for proteolysis AGO1 when it is unloaded and mutated.

View Article and Find Full Text PDF

Previously, we have shown that apoplastic wash fluid (AWF) purified from Arabidopsis leaves contains small RNAs (sRNAs). To investigate whether these sRNAs are encapsulated inside extracellular vesicles (EVs), we treated EVs isolated from Arabidopsis leaves with the protease trypsin and RNase A, which should degrade RNAs located outside EVs but not those located inside. These analyses revealed that apoplastic RNAs are mostly located outside and are associated with proteins.

View Article and Find Full Text PDF

species are globally distributed and well known as members of a destructive phytopathogenic genus, causing the anthracnose disease in a wide variety of crops and fruits. is the causal agent of the anthracnose disease in sorghum, causing losses of up to 50% in yield. Here, we used PacBio sequencing combined with RNA-seq to generate a chromosome-level assembly and annotation of the strain CsGL1.

View Article and Find Full Text PDF
Article Synopsis
  • Aegilops tauschii is crucial as the donor of the D subgenome for hexaploid wheat and has a new reference-quality genome sequence (Aet v5.0) that enhances its use in wheat research and breeding.
  • Improvements to the genome included closing 38,899 gaps using advanced sequencing techniques, which resulted in the updating and reannotation of protein-coding genes and transposable elements.
  • The new assembly features the annotation of important genes related to plant features and disease resistance, revealing specific patterns of gene distribution on chromosomes that can inform future breeding programs.
View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNAs that direct post-transcriptional gene silencing in plant development and stress responses through cleavage or translational repression of target mRNAs. Here, we report the identification and functional characterization of a new member of the miR812 family in rice (named as miR812w) involved in disease resistance. miR812w is present in cultivated Oryza species, both japonica and indica subspecies, and wild rice species within the Oryza genus, but not in dicotyledonous species.

View Article and Find Full Text PDF

Microspore embryogenesis is a model for developmental plasticity and cell fate decisions. To investigate the role of miRNAs in this development, we sequenced sRNAs and the degradome of barley microspores collected prior to (day 0) and after (days 2 and 5) the application of a stress treatment known to induce embryogenesis. Microspores isolated at these timepoints were uniform in both appearance and in their complements of sRNAs.

View Article and Find Full Text PDF

Maize somatic embryogenesis (SE) requires the induction of embryogenic callus and establishment of proliferation before plant regeneration. The molecular mechanisms underlying callus embryogenic potential are not well understood. Here we explored the role of small RNAs (sRNAs) and the accumulation of their target transcripts in maize SE at the dedifferentiation step using VS-535 zygotic embryos collected at distinct developmental stages and displaying contrasting in vitro embryogenic potential and morphology.

View Article and Find Full Text PDF

Regulated gene expression is key to the orchestrated progression of the cell cycle. Many genes are expressed at specific points in the cell cycle, including important cell cycle regulators, plus factors involved in signal transduction, hormonal regulation, and metabolic control. We demonstrate that post-embryonic depletion of Arabidopsis () ARGONAUTE1 (AGO1), the main effector of plant microRNAs (miRNAs), impairs cell division in the root meristem.

View Article and Find Full Text PDF

Small RNAs (sRNAs) that are 21 to 24 nucleotides (nt) in length are found in most eukaryotic organisms and regulate numerous biological functions, including transposon silencing, development, reproduction, and stress responses, typically via control of the stability and/or translation of target mRNAs. Major classes of sRNAs in plants include microRNAs (miRNAs) and small interfering RNAs (siRNAs); sRNAs are known to travel as a silencing signal from cell to cell, root to shoot, and even between host and pathogen. In mammals, sRNAs are transported inside extracellular vesicles (EVs), which are mobile membrane-bound compartments that participate in intercellular communication.

View Article and Find Full Text PDF

Localization of mRNA and small RNAs (sRNAs) is important for understanding their function. Fluorescent in situ hybridization (FISH) has been used extensively in animal systems to study the localization and expression of sRNAs. However, current methods for fluorescent in situ detection of sRNA in plant tissues are less developed.

View Article and Find Full Text PDF

Background And Aims: MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional regulators of gene expression via sequence-specific cleavage or translational repression of target transcripts. They are transcribed as long single-stranded RNA precursors with unique stem-loop structures that are processed by a DICER-Like (DCL) ribonuclease, typically DCL1, to produce mature miRNAs. Although a plethora of miRNAs have been found to be regulated by pathogen infection in plants, the biological function of most miRNAs remains largely unknown.

View Article and Find Full Text PDF

Phased, secondary siRNAs (phasiRNAs) represent a class of small RNAs in plants generated via distinct biogenesis pathways, predominantly dependent on the activity of 22-nt miRNAs. Most 22-nt miRNAs are processed by DCL1 from miRNA precursors containing an asymmetric bulge, yielding a 22/21-nt miRNA/miRNA* duplex. Here we show that miR1510, a soybean miRNA capable of triggering phasiRNA production from numerous (s), previously described as 21 nt in its mature form, primarily accumulates as a 22-nt isoform via monouridylation.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are key regulators of gene expression. A handful of miRNAs are broadly conserved in land plants, while the majority are lineage specific; this review describes the processes by which new miRNAs are hypothesized to have emerged. Two major models describe miRNA origins, firstly, de novo emergence via inverted duplication of target gene fragments, and secondly, the expansion and neofunctionalization of existing miRNA families.

View Article and Find Full Text PDF