Plant reactions to stress vary with development stage and fitness. This study assessed the relationship between light and chilling stress in Arabidopsis acclimation. By analysing the transcriptome and proteome responses of expanding leaves subjected to varying light intensity and cold, 2251 and 2064 early response genes and proteins were identified, respectively.
View Article and Find Full Text PDFDrought stress imposes severe challenges on agriculture by impacting crop performance. Understanding drought responses in plants at a cellular level is a crucial first step toward engineering improved drought resilience. However, the molecular responses to drought are complex as they depend on multiple factors, including the severity of drought, the profiled organ, its developmental stage or even the cell types therein.
View Article and Find Full Text PDFPlant Cell Environ
January 2025
ETHYLENE RESPONSE FACTOR6 (ERF6) has emerged as a central player in stress-induced plant growth inhibition. It orchestrates complex pathways that enable plants to acclimate and thrive in challenging environments. In response to various abiotic and biotic stresses, ERF6 is promptly activated through both ethylene-dependent and -independent pathways, and contributes to enhanced stress tolerance mechanisms by activating a broad spectrum of genes at various developmental stages.
View Article and Find Full Text PDFGibberellic acid (GA) plays a central role in many plant developmental processes and is crucial for crop improvement. DELLA proteins, the core suppressors in the GA signaling pathway, are degraded by GA via the 26S proteasomal pathway to release the GA response. However, little is known about the phosphorylation-mediated regulation of DELLA proteins.
View Article and Find Full Text PDFBiotic and abiotic environmental cues are major factors influencing plant growth and productivity. Interactions with biotic (e.g.
View Article and Find Full Text PDFThe leaf epidermis represents a multifunctional tissue consisting of trichomes, pavement cells and stomata, the specialized cellular pores of the leaf. Pavement cells and stomata both originate from regulated divisions of stomatal lineage ground cells (SLGCs), but whereas the ontogeny of the stomata is well characterized, the genetic pathways activating pavement cell differentiation remain relatively unexplored. Here, we reveal that the cell cycle inhibitor SIAMESE-RELATED1 (SMR1) is essential for timely differentiation of SLGCs into pavement cells by terminating SLGC self-renewal potency, which depends on CYCLIN A proteins and CYCLIN-DEPENDENT KINASE B1.
View Article and Find Full Text PDFRNA silencing is a conserved mechanism in eukaryotes involved in development and defense against viruses. In plants, ARGONAUTE1 (AGO1) protein plays a central role in both microRNA- and small interfering RNA-directed silencing, and its expression is regulated at multiple levels. Here, we report that the F-box protein FBW2 assembles an SCF complex that selectively targets for proteolysis AGO1 when it is unloaded and mutated.
View Article and Find Full Text PDFDrought stress constitutes one of the major constraints to agriculture all over the world, and its devastating effect is only expected to increase in the following years due to climate change. Concurrently, the increasing food demand in a steadily growing population requires a proportional increase in yield and crop production. In the past, research aimed to increase plant resilience to severe drought stress.
View Article and Find Full Text PDFAs the main photosynthetic instruments of vascular plants, leaves are crucial and complex plant organs. A strict organization of leaf mesophyll and epidermal cell layers orchestrates photosynthesis and gas exchange. In addition, water and nutrients for leaf growth are transported through the vascular tissue.
View Article and Find Full Text PDFThe worldwide distribution of Arabidopsis (Arabidopsis thaliana) accessions imposes different types of evolutionary pressures, which contributes to various responses of these accessions to environmental stresses. Responses to drought stress have mostly been studied in the Columbia accession, which is predominantly used in plant research. However, the reactions to drought stress are complex and our understanding of the responses that contribute to maintaining plant growth during mild drought (MD) is very limited.
View Article and Find Full Text PDFSmall RNAs (sRNAs), mainly including miRNAs and siRNAs, are ubiquitous in eukaryotes. sRNAs mostly negatively regulate gene expression via (post-)transcriptional gene silencing through DNA methylation, mRNA cleavage, or translation inhibition. The mechanisms of sRNA biogenesis and function in diverse biological processes, as well as the interactions between sRNAs and environmental factors, like (a)biotic stress, have been deeply explored.
View Article and Find Full Text PDFDrought stress forms a major environmental constraint during the life cycle of plants, often decreasing plant yield and in extreme cases threatening survival. The molecular and physiological responses induced by drought have been the topic of extensive research during the past decades. Because soil-based approaches to studying drought responses are often challenging due to low throughput and insufficient control of the conditions, osmotic stress assays in plates were developed to mimic drought.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2019
RNA silencing is a major antiviral defense mechanism in plants and invertebrates. Plant ARGONAUTE1 (AGO1) is pivotal in RNA silencing, and hence is a major target for counteracting viral suppressors of RNA-silencing proteins (VSRs). P0 from (TuYV) is a VSR that was previously shown to trigger AGO1 degradation via an autophagy-like process.
View Article and Find Full Text PDFRegulated gene expression is key to the orchestrated progression of the cell cycle. Many genes are expressed at specific points in the cell cycle, including important cell cycle regulators, plus factors involved in signal transduction, hormonal regulation, and metabolic control. We demonstrate that post-embryonic depletion of Arabidopsis () ARGONAUTE1 (AGO1), the main effector of plant microRNAs (miRNAs), impairs cell division in the root meristem.
View Article and Find Full Text PDFPost-transcriptional gene silencing (PTGS) is a major mechanism regulating gene expression in higher eukaryotes. To identify novel players in PTGS, a forward genetics screen was performed on an Arabidopsis thaliana line overexpressing a strong growth-repressive gene, ETHYLENE RESPONSE FACTOR6 (ERF6). We identified six independent ethyl-methanesulfonate mutants rescuing the dwarfism of ERF6-overexpressing plants as a result of transgene silencing.
View Article and Find Full Text PDFLeaf growth is a complex, quantitative trait, controlled by a plethora of regulatory mechanisms. Diverse environmental stimuli inhibit leaf growth to cope with the perceived stress. In plant research, mannitol is often used to impose osmotic stress and study the underlying growth-repressing mechanisms.
View Article and Find Full Text PDFThe plant cell cycle is tightly regulated by factors that integrate endogenous cues and environmental signals to adapt plant growth to changing conditions. Under drought, cell division in young leaves is blocked by an active mechanism, reducing the evaporative surface and conserving energy resources. The molecular function of cyclin-dependent kinase-inhibitory proteins (CKIs) in regulating the cell cycle has already been well studied, but little is known about their involvement in cell cycle regulation under adverse growth conditions.
View Article and Find Full Text PDF