Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The worldwide distribution of Arabidopsis (Arabidopsis thaliana) accessions imposes different types of evolutionary pressures, which contributes to various responses of these accessions to environmental stresses. Responses to drought stress have mostly been studied in the Columbia accession, which is predominantly used in plant research. However, the reactions to drought stress are complex and our understanding of the responses that contribute to maintaining plant growth during mild drought (MD) is very limited. Here, we studied the mechanisms with which natural accessions react to MD at a physiological and molecular level during early leaf development. We documented variations in MD responses among natural accessions and used transcriptome sequencing of a drought-sensitive accession, ICE163, and a drought-insensitive accession, Yeg-1, to gain insights into the mechanisms underlying this discrepancy. This revealed that ICE163 preferentially induces jasmonate- and anthocyanin-related pathways, which are beneficial in biotic stress defense, whereas Yeg-1 has a more pronounced activation of abscisic acid signaling, the classical abiotic stress response. Related physiological traits, including the content of proline, anthocyanins, and reactive oxygen species, stomatal closure, and cellular leaf parameters, were investigated and linked to the transcriptional responses. We can conclude that most of these processes constitute general drought response mechanisms that are regulated similarly in drought-insensitive and -sensitive accessions. However, the capacity to close stomata and maintain cell expansion under MD appeared to be major factors that allow to better sustain leaf growth under MD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8195540PMC
http://dx.doi.org/10.1093/plphys/kiab115DOI Listing

Publication Analysis

Top Keywords

natural accessions
12
mild drought
8
drought stress
8
accessions
6
drought
5
responses
5
distinct cellular
4
cellular strategies
4
strategies determine
4
determine sensitivity
4

Similar Publications

Metagenomic analyses of microbial communities have unveiled a substantial level of interspecies and intraspecies genetic diversity by reconstructing metagenome-assembled genomes (MAGs). The MAG database (MAGdb) boasts an impressive collection of 74 representative research papers, spanning clinical, environmental, and animal categories and comprising 13,702 paired-end run accessions of metagenomic sequencing and 99,672 high quality MAGs with manually curated metadata. MAGdb provides a user-friendly interface that users can browse, search, and download MAGs and their corresponding metadata information.

View Article and Find Full Text PDF

The argan tree (Argania spinosa L. Skeels), native to the sub-Saharan region of Morocco, is an endangered agroforestry species renowned for producing one of the world's most expensive and sought-after oils. However, this valuable resource is threatened by the Mediterranean fruit fly (Ceratitis capitata (Wied.

View Article and Find Full Text PDF

Pseudoduganella rhizocola sp. nov., Isolated from Rhizospheric Soil.

Curr Microbiol

September 2025

Department of Integrative Biotechnology, Sungkyunkwan University, Natural Science Campus, 2066 Seobu-ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, Republic of Korea.

A novel bacterial strain, SM-13 was isolated from the rhizospheric soil of Epipremnum aureum (Jade Pothos) sampled in Suwon, Republic of Korea. The isolate was Gram-stain-negative, aerobic, motile, rod-shaped, cream-coloured, oxidase- and catalase-positive. Strain SM-13 grew at the range of 15-37 °C (optimum, 25 °C), at pH 6.

View Article and Find Full Text PDF

Background: Centromeres are crucial for precise chromosome segregation and maintaining genome stability during cell division. However, their evolutionary dynamics, particularly in polyploid organisms with complex genomic architectures, remain largely enigmatic. Allopolyploid wheat, with its well-defined hierarchical ploidy series and recent polyploidization history, serves as an excellent model to explore centromere evolution.

View Article and Find Full Text PDF

Genomic resequencing unravels species differentiation and polyploid origins in the aquatic plant genus Trapa.

Plant J

September 2025

State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Science, Wuhan, Hubei, 430074, China.

Trapa L. is a non-cereal aquatic crop with significant economic and ecological value. However, debates over its classification have caused uncertainties in species differentiation and the mechanisms of polyploid speciation.

View Article and Find Full Text PDF