Background: The infection of cats with Protoparvovirus carnivoran1 is a global concern due to the likelihood of infection from multiple genetically similar viruses.
Objectives: The present study was undertaken to investigate the clinico-molecular epidemiology of Protoparvovirus carnivoran1 infection in naturally infected domestic cats in Bangladesh.
Methods: Rectal swabs (N = 100) were collected from cats manifesting clinical signs and screened for the presence of Protoparvovirus carnivoran1 using polymerase chain reaction (PCR).
Herein, we introduce a supramolecular method to form DNA-based networks by cross-linking DNA with Rh(II)-based metal-organic polyhedra (MOPs), which entails coordination of DNA to the exohedral Rh(II) axial sites of the MOP. The resultant highly connected networks can then be processed into gels, porous aerogels, or hydrogels, exhibiting properties suitable for pollutant removal and drug release.
View Article and Find Full Text PDFThe last decade has seen a tremendous expansion of the field of heterogenized molecular catalysis, especially with the growing interest in metal-organic frameworks and related porous hybrid solids. With successful achievements in the transfer from molecular homogeneous catalysis to heterogenized processes come the necessary discussions on methodologies used and a critical assessment on the advantages of heterogenizing molecular catalysis. Here we use the example of nickel-catalyzed ethylene oligomerization, a reaction of both fundamental and applied interest, to review heterogenization methodologies of well-defined molecular catalysts within porous solids while addressing the biases in the comparison between original molecular systems and heterogenized counterparts.
View Article and Find Full Text PDFAggregation-induced catalyst deactivation during the reaction in supported metal catalysts prevails as one of the pitfalls toward their practical implementation. Herein, a homogeneously dispersed palladium-coordinated N-heterocyclic carbene (NHC) was strategically integrated inside a microporous hyper-cross-linked polymer via post-synthesis structural modulation. Successful immobilization of spatially isolated Pd (II) units onto the polymer scaffold yielded highly robust heterogeneous catalysts 120-MI@Pd NHC and 120-EI@Pd NHC, respectively.
View Article and Find Full Text PDFLarge-scale nuclear power plant production of iodine radionuclides ( I, I) pose huge threat in the events of nuclear disaster. Effective removal of radioiodine from nuclear waste is one of the most critical challenge because of the drawbacks of state-of-the-art adsorbents such as high cost, low uptake capacity and non-recyclability. Herein, two hydroxy-functionalized (-OH) hypercrosslinked polymers (HCPs), namely HCP-91 and HCP-92, have been synthesized and employed towards capture of iodine.
View Article and Find Full Text PDFOwing to detrimental impact of cyanide ion (CN ) towards the entire living system as well as its availability in drinking water, it has become very important developing potential sensory materials for the selective and sensitive recognition of CN ions in water. In the domain of sensory materials, luminescent metal-organic frameworks (LMOFs) have been considered as a promising candidate owing to their unique host-guest interaction, where MOFs can serve as an ideal scaffold for encapsulating relevant guest molecules rendering specific functionality. In this study, a post-synthetically modified MOF (viz.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2021
A cationic microporous composite polymer (120-TMA@Fe) bearing free exchangeable chloride anions alongside easy magnetic separation was crafted through post-polymerization structure modulation. The precursor polymer 120-Cl was synthesized via an "external cross-linking" strategy in a straightforward one-pot Friedel-Crafts reaction. Subsequently, a cationic network accommodating magnetic FeO nanoparticles, viz.
View Article and Find Full Text PDFFabricating new and efficient materials aimed at containment of water contamination, in particular removing toxic heavy metal based oxo-anions (e. g. CrO , TcO ) holds paramount importance.
View Article and Find Full Text PDFWater pollution from heavy metals and their toxic oxo-anionic derivatives such as CrO42-, Cr2O72-, HAsO42-, and HAsO32- has become one of the most critical environmental issues. To address this, herein, we report a new hydrolytically stable luminescent Zn(ii) based cationic metal organic framework (MOF), iMOF-4C, which further successfully exhibited a rare dual "turn off/on" fluorescence response toward Cr(vi), As(v) and As(iii) based oxo-anions respectively in water medium. In addition, iMOF-4C was found to maintain its superior selectivity in the presence of other concurrent anions (e.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
Water contamination due to heavy metal-based toxic oxo-anions (such as CrO and TcO) is a critical environmental concern that demands immediate mitigation. Herein, we present an effort to counter this issue by a novel chemically stable cationic metal-organic framework (iMOF-2C) with strategic utilization of a ligand with hydrophobic core, known to facilitate such oxo-anion capture process. Moreover, the compound exhibited very fast sieving kinetics for such oxo-anions and a very high uptake capacity for CrO (476.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have evolved as an exciting class of materials in the domain of porous materials. The unique features of these materials arise from the combined properties of metal ions/clusters and organic struts which form the building blocks of these fascinating architectures. Among other multifarious applications, MOFs have shown tremendous applications as sensory materials for a wide variety of species.
View Article and Find Full Text PDFThe Pd(OAc) catalyzed cross-coupling of N-substituted phthalimides with aryl halide provides a single step direct access of a wide range of synthetically appealing ortho-substituted biarylamides in high yields through unique carbonyl (CO) replacement. The reaction proceeds through a ligand-free condition and is well tolerant to the diverse functionality of both imide and halide units. The reaction negates any requirement of organometallic reagent and needs a shorter reaction time and comparatively lower temperature as required for previously reported decarbonylative processes.
View Article and Find Full Text PDFDetoxification of water has been demonstrated with a viologen-based cationic organic network (compound-), which was stable not only in water, but also in acidic and basic media. The presence of free exchangeable Cl ions inside the network of compound- and a high physiochemical stability of the materials offered a suitable scope for the capture of hazardous anionic pollutants from water. Rapid removal of the toxic water pollutant and carcinogenic chromate (CrO ) from water was shown with compound-.
View Article and Find Full Text PDFA systematic approach has been employed to obtain a hydrolytically stable cationic metal-organic framework (MOF). The synthesized two-dimensional Ni(II)-centered cationic MOF, having its backbone built from purely neutral N-donor ligand, is found to exhibit uncommon resistance over wide pH range, particularly even under highly alkaline conditions. This report presents a rare case of a porous MOF retaining structural integrity under basic conditions, and an even rarer case of a porous cationic MOF.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2018
An isostructural pair of extremely rare, permanently microporous sulfonate-based metal-organic frameworks (MOFs) having a novel topology has been reported here by integration of rationally chosen building units. The compounds bear polar sites in the pore surfaces and exhibit selective adsorption of CO, which features among the highest reported uptakes in the domain of organosulfonate-based MOFs. The compounds also exhibit multifunctionality for C-cyclic hydrocarbon separation and selective detection of neurotransmitter nitric oxide.
View Article and Find Full Text PDFFluorous organic building blocks were utilized to develop two self-assembled, hydrophobic, fluorinated porous organic polymers (FPOPs), namely, FPOP-100 and FPOP-101. Comprehensive mechanical analyses of these functionalised triazine network polymers marked the introduction of mechanical stiffness among all porous organic network materials; the recorded stiffnesses are analogous to those of their organic-inorganic hybrid polymer congeners, that is, metal-organic frameworks. Furthermore, this study introduces a new paradigm for the simultaneous installation of mechanical stiffness and high surface hydrophobicity into polymeric organic networks, with the potential for transfer among all porous solids.
View Article and Find Full Text PDFA metal-organic framework (MOF)-based highly selective and sensitive probe (UiO-66@Butyne) for the detection of Hg(II) ion has been developed. To the best our knowledge, this is the foremost example of a chemodosimeter-based approach to sense Hg(II) ion using a MOF-based probe. The chemical stability of UiO-66@Butyne renders the sensitive detection of Hg ion in an aqueous phase.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) have evolved to be next-generation utility materials because of their serviceability in a wide variety of applications. Built from organic ligands with multiple binding sites in conjunction with metal ions/clusters, these materials have found profound advantages over their other congeners in the domain of porous materials. The plethora of applications that these materials encompass has motivated material chemists to develop such novel materials, and the catalogue of MOFs is thus ever-escalating.
View Article and Find Full Text PDFChem Commun (Camb)
January 2017
A pure aqueous phase recognition and corresponding detoxification of highly toxic cyanide ions has been achieved by a fluorescent metal-organic framework (MOF). The cyanide detoxification has been shown to be effective even in in vitro studies and the MOF could be recycled to show the same efficiency of detoxification.
View Article and Find Full Text PDFBeilstein J Org Chem
September 2016
Two hydroxy-functionalized hyper-cross-linked ultra-microporous compounds have been synthesized by Friedel-Crafts alkylation reaction and characterised with different spectroscopic techniques. Both compounds exhibit an efficient carbon dioxide uptake over other gases like N, H and O at room temperature. A high isosteric heat of adsorption () has been obtained for both materials because of strong interactions between polar -OH groups and CO molecules.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
August 2016
Two porous hydrogen-bonded organic frameworks (HOFs) based on arene sulfonates and guanidinium ions are reported. As a result of the presence of ionic backbones appended with protonic source, the compounds exhibit ultra-high proton conduction values (σ) 0.75× 10(-2) S cm(-1) and 1.
View Article and Find Full Text PDFA porous covalent triazine framework (CTF) consisting of both an electron-deficient central triazine core and electron-rich aromatic building blocks is reported. Taking advantage of the dual nature of the pore surface, bimodal functionality has been achieved. The electron deficiency in the central core has been utilized to address one of the pertinent problems in chemical industries, namely separation of benzene from its cyclic saturated congener, that is, cyclohexane.
View Article and Find Full Text PDFSelective and sensitive detection of toxic cyanide (CN(-) ) by a post-synthetically altered metal-organic framework (MOF) has been achieved. A post-synthetic modification was employed in the MOF to incorporate the specific recognition site with the CN(-) ion over all other anions, such as Cl(-) , Br(-) , and SCN(-) . The aqueous-phase sensing and very low detection limit, the essential prerequisites for an effective sensory material, have been fulfilled by the MOF.
View Article and Find Full Text PDFA new function of metal-sulfate-based coordination polymer (CP) for proton conduction was investigated through rational integration of a continuous water array and protonated amine in the coordination space of the CP. The H-bonded arrays of water molecules along with nitrogen-rich aromatic cation (protonated melamine) facilitate proton conduction in the compound under humid conditions. Although several reports of metal-oxalate/phosphate-based CPs showing proton conduction are known, this is the first designed synthesis of a metal-sulfate-based CP bearing water arrays functioning as a solid-state proton conductor.
View Article and Find Full Text PDF