98%
921
2 minutes
20
Owing to detrimental impact of cyanide ion (CN ) towards the entire living system as well as its availability in drinking water, it has become very important developing potential sensory materials for the selective and sensitive recognition of CN ions in water. In the domain of sensory materials, luminescent metal-organic frameworks (LMOFs) have been considered as a promising candidate owing to their unique host-guest interaction, where MOFs can serve as an ideal scaffold for encapsulating relevant guest molecules rendering specific functionality. In this study, a post-synthetically modified MOF (viz., CuCl @MOF-867) was applied to recognize cyanide (CN ) ions in water via "turn-on" response. The bipyridyl functionalities in MOF-867 were used to perform post-synthetic metalation to infiltrate CuCl inside porous architecture of the MOF. Moreover, a CuCl @MOF-867 based probe demonstrated highly selective and sensitive aqueous phase recognition of CN ions even in the presence of other interfering anions such as Br , NO , I , SO , OAc , SCN , NO , etc. The selective binding of CN ions to the copper-metal center has led to the generation of stable Cu(CN) species. This phenomenon has further resulted in a fluorescence turn-on response. The aqueous phase cyanide detection by the rationally modified MOF system exhibited very low limit of detection (0.19 μM), which meets the standardized limit stated by World Health Organization (WHO) that is 1.9 μM.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cplu.202100426 | DOI Listing |
Pest Manag Sci
September 2025
Laboratory of Applied Entomology, Graduate School of Horticulture, Chiba University, Chiba, Japan.
Background: The coevolutionary arms race between echolocating bats and tympanate moths has driven the evolution of ultrasound-mediated escape behaviors in moths. Bat-emitted ultrasonic pulses vary in sound intensity and temporal structure, with pulse repetition rate (PRR) which intrinsically encode critical information about predation risk, i.e.
View Article and Find Full Text PDFNano Lett
September 2025
Department of Materials Science and Engineering, Seoul National University, Seoul 08826, South Korea.
Seamless integration of active devices into photonic integrated circuits remains a challenge due to the limited accessibility of the optical field in conventional waveguides, which tightly confine light within their cores. In this study, we propose a two-dimensional (2D) ultrathin waveguide as a photonic platform that enables efficient interaction between guided light and surface-mounted devices by supporting optical modes dominated by evanescent fields. We show that the guided light in a monolayer MoS film propagates over millimeter-scale distances with more than 99.
View Article and Find Full Text PDFiScience
September 2025
Energy Conversion Research Center, Electrical Materials Research Division, Korea Electrotechnology Research Institute, Changwon, Gyeongsangnam-do 51543, Republic of Korea.
Indoor photovoltaics (IPVs) are small and not optimized for versatile environments, making them environmentally sensitive. To expand the application of energy-harvesting photovoltaics, overcoming the current problems and mismatch loss is important. In this study, we found that IPVs are sensitive to changes in current density under low illuminance, and we introduced a protocol to reveal the modules resulting in the smallest standard deviation using current maps.
View Article and Find Full Text PDFJ Healthc Sci Humanit
January 2024
Formerly Associate Professor of Epidemiology and Risk Analysis, Department of Pathobiology/Department of Graduate Public Health, College of Veterinary Medicine, Tuskegee University, Phone: (334) 524-1988, Email:
The COVID-19 pandemic is a highly infectious disease of paramount public health importance. COVID-19 is mainly transmitted via human-to-human contact. This could be through self-inoculation resulting from failure to observe proper hand hygiene and infection control practices.
View Article and Find Full Text PDFFront Nutr
August 2025
Thaer-Institute-Div. Urban Plant Ecophysiology, Humboldt-Universität zu Berlin, Berlin, Germany.
Background: Changes in consumer food choices have been associated with transformation in the food environment. Despite the direct impact of consumers' food choices on their diet and health outcomes, there is a lack of comprehensive evidence regarding how various factors within the food environment impact these choices.
Methods: This study uses the Theory of Planned Behavior to examine how socio-psychological factors in the food environment influence consumers' healthy food choices.