Herein, we introduce a supramolecular method to form DNA-based networks by cross-linking DNA with Rh(II)-based metal-organic polyhedra (MOPs), which entails coordination of DNA to the exohedral Rh(II) axial sites of the MOP. The resultant highly connected networks can then be processed into gels, porous aerogels, or hydrogels, exhibiting properties suitable for pollutant removal and drug release.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs) assembled from multiple building blocks exhibit greater chemical complexity and superior functionality in practical applications. Herein, we report a new approach based on using prefabricated cavities to design isoreticular multicomponent MOFs from a known parent MOF. We demonstrate this concept with the formation of multicomponent HKUST-1 analogues, using a prefabricated cavity that comprises a cuboctahedral Rh(II) metal-organic polyhedron functionalized with 24 carboxylic acid groups.
View Article and Find Full Text PDFMetal-organic polyhedra (MOPs) are a subclass of coordination cages that can adsorb and host species in solution and are permanently porous in solid-state. These characteristics, together with the recent development of their orthogonal surface chemistry and the assembly of more stable cages, have awakened the latent potential of MOPs to be used as building blocks for the synthesis of extended porous networks. This review article focuses on exploring the key developments that make the extension of MOPs possible, highlighting the most remarkable examples of MOP-based soft materials and crystalline extended frameworks.
View Article and Find Full Text PDF