Publications by authors named "NianNian Liu"

A small-scale biomass chain grate boiler utilizing biomass as fuel plays a pivotal role in enhancing combustion efficiency and reducing emissions, directly contributing to energy conservation and emission reduction. This study employs FLIC-FLUENT to develop a multiphysics coupled model for the solid-phase combustion on the grate and gas-phase combustion in the furnace of a small-scale biomass chain grate boiler. The model enables the simulation of gas-side processes of the small-scale biomass boiler.

View Article and Find Full Text PDF

Fluidization bed reactor is an attractive method to synthesize and process quantities of functional nanoparticles, due to the large gas-solid contact area and its potential scalability. Nanoparticles fluidize not individually but as a form of porous agglomerates with a typical porosity above 90%. The porous structure has a significant effect on the hydrodynamic behavior of a single nanoparticle agglomerate, but its influence on the flow behavior of nanoparticle agglomerates in a fluidized bed is currently unclear.

View Article and Find Full Text PDF

Proanthocyanidins (PAs) are specialized metabolites that influence persimmon fruit quality. Normal astringent (A)-type and non-astringent (NA)-type mutants show significant variation in PA accumulation, but the influencing mechanism remains unclear. In this study, among the six identified DTXs/MATEs proteins associated with PA accumulation, we observed that allelic variation and preferential transport by DkDTX5/MATE5 induced variation in PA accumulation for A-type and NA-type fruit.

View Article and Find Full Text PDF

Circular RNA (CircRNA) is widely expressed and has physiological and pathological significance, regulating post-transcriptional processes via its protein-binding activity. However, whereas much work has been done on linear RNA and RNA binding protein (RBP), little is known about the binding sites of CircRNA. The current report is on the development of a medium-term multimodal data fusion strategy, CRBSP, to predict CircRNA-RBP binding sites.

View Article and Find Full Text PDF

Cumulative studies have shown that many long non-coding RNAs (lncRNAs) are crucial in a number of diseases. Predicting potential lncRNA-disease associations (LDAs) can facilitate disease prevention, diagnosis and treatment. Therefore, it is vital to develop practical computational methods for LDA prediction.

View Article and Find Full Text PDF

Background: DNA N4-methylcytosine is part of the restrictive modification system, which works by regulating some biological processes, for example, the initiation of DNA replication, mismatch repair and inactivation of transposon. However, using experimental methods to detect 4mC sites is time-consuming and expensive. Besides, considering the huge differences in the number of 4mC samples among different species, it is challenging to achieve a robust multi-species 4mC site prediction performance.

View Article and Find Full Text PDF

Background: Many long non-coding RNAs (lncRNAs) have key roles in different human biologic processes and are closely linked to numerous human diseases, according to cumulative evidence. Predicting potential lncRNA-disease associations can help to detect disease biomarkers and perform disease analysis and prevention. Establishing effective computational methods for lncRNA-disease association prediction is critical.

View Article and Find Full Text PDF

Circular RNA (circRNA) is a non-coding molecule produced through alternative splicing of one or more exons of a gene in the presence of an RNA-induced silencing complex (RISC). Its formation depends on complementary intron sequences on both sides of the circularized sequence. CircRNA functions as a sponge for miRNA, playing the role of the transcriptional regulator or potential biomarker.

View Article and Find Full Text PDF

Molecular mechanisms underlying myocardial ischemia/reperfusion (MI/R) injury and effective strategies to treat MI/R injury are both in shortage. Although pyroptosis of cardiomyocytes and the protective role of cardiac fibroblasts (CFs) have been well recognized as targets to reduce MI/R injury and sudden cardiac death (SCD), the connection has not yet been established. Here, we showed that CFs protected cardiomyocytes against MI/R-induced injury through suppression of pyroptosis.

View Article and Find Full Text PDF

Objective: Findings regarding the prognostic value of soluble suppression of tumorigenecity-2 (sST2) in patients with coronary artery disease (CAD) remain inconsistent. Therefore, we conducted this meta-analysis to investigate the long-term prognostic value of sST2 in patients with CAD.

Methods: A comprehensive literature search was conducted across the PubMed, Embase, and Cochrane Library databases up to June 3, 2020.

View Article and Find Full Text PDF

Rheumatic heart disease (RHD) occurs due to the accumulation of complications associated with rheumatic fever, and it results in high morbidity and mortality. The majority of cases of RHD are diagnosed in the chronic stages, when treatment options are limited. A small reservoir of cardiac stem cells is responsible for maintaining cardiac homeostasis and repairing tissue damage.

View Article and Find Full Text PDF