In Catharanthus roseus, monoterpenoid indole alkaloids (MIAs) are produced through the cooperation of four cell types, with final products accumulating in specialized cells known as idioblasts and laticifers. To explore the relationship between cellular differentiation and cell type-specific MIA metabolism, we analyzed the expression of MIA biosynthesis in germinating seeds. Embryos from immature and mature seeds were observed via stereomicroscopy, fluorescence microscopy, and electron microscopy.
View Article and Find Full Text PDFSerine metabolism is involved in various biological processes. Here we investigate primary functions of the phosphorylated pathway of serine biosynthesis in a non-vascular plant Marchantia polymorpha by analyzing knockout mutants of MpPGDH encoding 3-phosphoglycerate dehydrogenase in this pathway. Growth phenotypes indicate that serine from the phosphorylated pathway in the dark is crucial for thallus growth.
View Article and Find Full Text PDFQuant Plant Biol
November 2022
Mobilisation of seed storage reserves is important for seedling establishment in . In this process, sucrose is synthesised from triacylglycerol via core metabolic processes. Mutants with defects in triacylglycerol-to-sucrose conversion display short etiolated seedlings.
View Article and Find Full Text PDFProgrammed cell death (PCD) in lateral root caps (LRCs) is crucial for maintaining root cap functionality. Endoplasmic reticulum (ER) bodies play important roles in plant immunity and PCD. However, the distribution of ER bodies and their communication with vacuoles in the LRC remain elusive.
View Article and Find Full Text PDFHighly efficient tissue repair is pivotal for surviving damage-associated stress. Plants generate callus upon injury to heal wound sites, yet regulatory mechanisms of tissue repair remain elusive. Here, we identified WUSCHEL-RELATED HOMEOBOX 13 (WOX13) as a key regulator of callus formation and organ adhesion in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFEuglena gracilis exhibits photomovements in response to various light stimuli, such as phototactic and photophobic responses. Our recent study revealed that carotenoids in the eyespot apparatus are required for triggering phototaxis in this alga. However, the role of chloroplasts in eyespot formation is not understood.
View Article and Find Full Text PDFHigh humidity decreases the penetration rate of barley powdery mildew f. sp. .
View Article and Find Full Text PDFMany plants can reproduce vegetatively, producing clonal progeny from vegetative cells; however, little is known about the molecular mechanisms underlying this process. Liverwort (Marchantia polymorpha), a basal land plant, propagates asexually via gemmae, which are clonal plantlets formed in gemma cups on the dorsal side of the vegetative thallus [1]. The initial stage of gemma development involves elongation and asymmetric divisions of a specific type of epidermal cell, called a gemma initial, which forms on the floor of the gemma cup [2, 3].
View Article and Find Full Text PDFPatterned cell wall deposition is crucial for cell shapes and functions. In Arabidopsis xylem vessels, ROP11 GTPase locally inhibits cell wall deposition through microtubule disassembly, inducing pits in cell walls. Here, we show that an additional ROP signaling pathway promotes cell wall growth at pit boundaries.
View Article and Find Full Text PDFNat Plants
January 2019
The plastid evolved from a symbiotic cyanobacterial ancestor and is an essential organelle for plant life, but its developmental roles in roots have been largely overlooked. Here, we show that plastid translation is connected to the stem cell patterning in lateral root primordia. The gene encodes a plastid-localized protein that is a conserved bacterial ribosomal protein S6 of β/γ proteobacterial origin.
View Article and Find Full Text PDFSpatial control of cell-wall deposition is essential for determining plant cell shape [1]. Rho-type GTPases, together with the cortical cytoskeleton, play central roles in regulating cell-wall patterning [2]. In metaxylem vessel cells, which are the major components of xylem tissues, active ROP11 Rho GTPases form oval plasma membrane domains that locally disrupt cortical microtubules, thereby directing the formation of oval pits in secondary cell walls [3-5].
View Article and Find Full Text PDFWe developed a wide-range and high-resolution transmission electron microscope acquisition system and obtained giga-pixel images of tobacco BY-2 cells during the log and stationary phases of cell growth. We demonstrated that the distribution and ultrastructure of compartments involved in membrane traffic (i.e.
View Article and Find Full Text PDFMaintenance of plastid and mitochondrial genome stability is crucial for photosynthesis and respiration, respectively. Recently, we have reported that RECA1 maintains mitochondrial genome stability by suppressing gross rearrangements induced by aberrant recombination between short dispersed repeats in the moss Physcomitrella patens. In this study, we studied a newly identified P.
View Article and Find Full Text PDFRapid growth of plant cells by cell division and expansion requires an endomembrane trafficking system. The endomembrane compartments, such as the Golgi stacks, endosome and vesicles, are important in the synthesis and trafficking of cell wall materials during cell elongation. However, changes in the morphology, distribution and number of these compartments during the different stages of cell proliferation and differentiation have not yet been clarified.
View Article and Find Full Text PDFThe development of cells specialized for water conduction or support is a striking innovation of plants that has enabled them to colonize land. The NAC transcription factors regulate the differentiation of these cells in vascular plants. However, the path by which plants with these cells have evolved from their nonvascular ancestors is unclear.
View Article and Find Full Text PDF