Introduction: The ANGUSTIFOLIA3 (AN3) gene encodes a transcriptional co-activator for cell proliferation in Arabidopsis thaliana leaves. We previously showed that Physcomitrium patens AN3 orthologs promote gametophore shoot formation through arginine metabolism.
Objectives: We analyzed the role of AN3 in Arabidopsis thaliana to understand how seedling growth is regulated by metabolic and physiological modulations.
Soybean (Glycine max) is a leguminous crop cultivated worldwide that accumulates high levels of isoflavones. Although previous research has often focused on increasing the soybean isoflavone content because of the estrogen-like activity of dietary soy in humans, the rapidly increasing demand for soybean as a plant-based meat substitute has raised concerns about excessive isoflavone intake. Therefore, the production of isoflavone-free soybean has been anticipated.
View Article and Find Full Text PDFThe identification of chemicals that modulate plant development and adaptive responses to stresses has attracted increasing attention for agricultural applications. Recent basic studies have identified functional amino acids that are essential for plant organogenesis, indicating that amino acids can regulate plant growth. In this study, we newly identified 2-aminopimelic acid (2APA), a nonproteinogenic amino acid, as a novel bioactive compound involved in root morphogenesis.
View Article and Find Full Text PDFSerine metabolism is involved in various biological processes. Here we investigate primary functions of the phosphorylated pathway of serine biosynthesis in a non-vascular plant Marchantia polymorpha by analyzing knockout mutants of MpPGDH encoding 3-phosphoglycerate dehydrogenase in this pathway. Growth phenotypes indicate that serine from the phosphorylated pathway in the dark is crucial for thallus growth.
View Article and Find Full Text PDFPlant Cell Physiol
December 2023
Plants incorporate acquired carbon and nitrogen into amino acid metabolism, whereby the building blocks of proteins and the precursors of various metabolites are produced. This fundamental demand requires tight amino acid metabolism to sustain physiological homeostasis. There is increasing evidence that amino acid metabolism undergoes plastic alteration to orchestrate specific growth and developmental events.
View Article and Find Full Text PDFA genome-wide association study (GWAS), which uses information on single nucleotide polymorphisms (SNPs) from many accessions, has become a powerful approach to gene identification. A metabolome GWAS (mGWAS), which relies on phenotypic information based on metabolite accumulation, can identify genes that contribute to primary and secondary metabolite contents. In this study, we carried out a mGWAS using seed metabolomic data from accessions obtained by liquid chromatography-mass spectrometry to identify SNPs highly associated with the contents of metabolites such as glucosinolates.
View Article and Find Full Text PDFQuant Plant Biol
November 2022
Mobilisation of seed storage reserves is important for seedling establishment in . In this process, sucrose is synthesised from triacylglycerol via core metabolic processes. Mutants with defects in triacylglycerol-to-sucrose conversion display short etiolated seedlings.
View Article and Find Full Text PDFFront Plant Sci
January 2023
The regulation of intracellular pyrophosphate (PPi) level is crucial for proper morphogenesis across all taxonomic kingdoms. PPi is released as a byproduct from ~200 metabolic reactions, then hydrolyzed by either membrane-bound (H-PPase) or soluble pyrophosphatases (PPases). In Arabidopsis, the loss of the vacuolar H-PPase/FUGU5, a key enzyme in PPi homeostasis, results in delayed growth and a number of developmental defects, pointing to the importance of PPi homeostasis in plant morphogenesis.
View Article and Find Full Text PDFFront Plant Sci
January 2023
Plant leaves display abundant morphological richness yet grow to characteristic sizes and shapes. Beginning with a small number of undifferentiated founder cells, leaves evolve a complex interplay of regulatory factors that ultimately influence cell proliferation and subsequent post-mitotic cell enlargement. During their development, a sequence of key events that shape leaves is both robustly executed spatiotemporally following a genomic molecular network and flexibly tuned by a variety of environmental stimuli.
View Article and Find Full Text PDFExcess PPi triggers developmental defects in a cell-autonomous manner. The level of inorganic pyrophosphate (PPi) must be tightly regulated in all kingdoms for the proper execution of cellular functions. In plants, the vacuolar proton pyrophosphatase (H-PPase) has a pivotal role in PPi homeostasis.
View Article and Find Full Text PDFIn plants, the effective mobilization of seed nutrient reserves is crucial during germination and for seedling establishment. The Arabidopsis H+-PPase-loss-of-function fugu5 mutants exhibit a reduced number of cells in the cotyledons. This leads to enhanced post-mitotic cell expansion, also known as compensated cell enlargement (CCE).
View Article and Find Full Text PDFTo reveal the logic of size regulation in multicellular organisms, we have used Arabidopsis thaliana as a model organism and its leaves as a model organ. We discovered the existence of a compensatory system, whereby a decrease in leaf cell number often triggers unusual cell enlargement. However, despite the large number of compensation-exhibiting mutants analyzed to date, we have only a limited understanding of the detailed molecular mechanisms triggering the decrease in cell number and subsequent compensated cell enlargement (CCE).
View Article and Find Full Text PDF