Unlabelled: Fruit and vegetable consumption is below the WHO recommendations, globally, in Southeast Asia, and in West Africa. Affordability, accessibility, and acceptability are the main drivers of consumption. Nutrition-sensitive food system interventions that address these drivers may be effective in increasing fruit and vegetable consumption.
View Article and Find Full Text PDFCurrent food systems fail to provide equity, sustainability, and positive health outcomes, thus underscoring the critical need for their transformation. Intervening in food environments holds substantial promise for contributing to this much-needed transformation. Despite scholars and practitioners often recognizing the necessity for bottom-up approaches, there is a dearth of empirical investigations evaluating the potential of these approaches to contribute to food system transformations in low- and middle-income countries (LMICs).
View Article and Find Full Text PDFBackground: Low fruit and vegetable (FV) intake in low- and middle-income countries, which is associated with noncommunicable diseases and micronutrient deficiencies, requires food system interventions addressing FV accessibility, affordability, and acceptability. Periodic FV intake monitoring during interventions informs progress toward achieving increased intakes and contributes to understanding the effectiveness of these interventions.
Objectives: This study evaluates the trend in FV intake before, during, and after implementation of a set of nutrition-sensitive food system interventions addressing accessibility, affordability, and acceptability to increase FV consumption over a 1-y period in Vietnamese and Nigerian low-income urban and periurban females.
Accurately detecting nitrogen (N) deficiency and determining the need for additional N fertilizer is a key challenge to achieving precise N management in many crops, including rice ( L.). Many remotely sensed vegetation indices (VIs) have shown promise in this regard; however, it is not well-known if VIs measured from different sensors can be used interchangeably.
View Article and Find Full Text PDFWheat ( L.) is a major global commodity and the primary source for baked products in agri-food supply chains. Consumers are increasingly demanding more nutritious food products with less environmental degradation, particularly related to water and fertilizer nitrogen (N) inputs.
View Article and Find Full Text PDFBisphosphonates (BPs) are a mainstay of osteoporosis treatment; however, concerns about bone health based on oversuppression of remodeling remain. Long-term bone remodeling suppression adversely affects bone material properties with microdamage accumulation and reduced fracture toughness in animals and increases in matrix mineralization and atypical femur fractures in patients. Although a "drug holiday" from BPs to restore remodeling and improve bone quality seems reasonable, clinical BPs have long functional half-lives because of their high hydroxyapatite (HAP) binding affinities.
View Article and Find Full Text PDFBisphosphonate (BP)-related osteonecrosis of the jaw, previously known as BRONJ, now referred to more broadly as medication-related osteonecrosis of the jaw (MRONJ), is a morbid condition that represents a significant risk for oncology patients who have received high dose intravenous (IV) infusion of a potent nitrogen containing BP (N-BP) drug. At present, no clinical procedure is available to prevent or effectively treat MRONJ. Although the pathophysiological basis is not yet fully understood, legacy adsorbed N-BP in jawbone has been proposed to be associated with BRONJ by one or more mechanisms.
View Article and Find Full Text PDFBisphosphonates are widely used in the treatment of clinical disorders characterized by increased bone resorption, including osteoporosis, Paget's disease, and the skeletal complications of malignancy. The antiresorptive potency of the nitrogen-containing bisphosphonates on bone in vivo is now recognized to depend upon two key properties, namely mineral binding affinity and inhibitory activity on farnesyl pyrophosphate synthase (FPPS), and these properties vary independently of each other in individual bisphosphonates. The better understanding of structure activity relationships among the bisphosphonates has enabled us to design a series of novel bisphosphonates with a range of mineral binding properties and antiresorptive potencies.
View Article and Find Full Text PDFOsteomyelitis is a major problem worldwide and is devastating due to the potential for limb-threatening sequelae and mortality. Osteomyelitis pathogens are bone-attached biofilms, making antibiotic delivery challenging. Here we describe a novel osteoadsorptive bisphosphonate-ciprofloxacin conjugate (BV600022), utilizing a "target and release" chemical strategy, which demonstrated a significantly enhanced therapeutic index versus ciprofloxacin for the treatment of osteomyelitis in vivo.
View Article and Find Full Text PDFA bone imaging toolkit of 21 fluorescent probes with variable spectroscopic properties, bone mineral binding affinities, and antiprenylation activities has been created, including a novel linking strategy. The linking chemistry allows attachment of a diverse selection of dyes fluorescent in the visible to near-infrared range to any of the three clinically important heterocyclic bisphosphonate bone drugs (risedronate, zoledronate, and minodronate or their analogues). The resultant suite of conjugates offers multiple options to "mix and match" parent drug structure, fluorescence emission wavelength, relative bone affinity, and presence or absence of antiprenylation activity, for bone-related imaging applications.
View Article and Find Full Text PDFIt has been suggested that the ecological impact of crickets as a source of dietary protein is less than conventional forms of livestock due to their comparatively efficient feed conversion and ability to consume organic side-streams. This study measured the biomass output and feed conversion ratios of house crickets (Acheta domesticus) reared on diets that varied in quality, ranging from grain-based to highly cellulosic diets. The measurements were made at a much greater population scale and density than any previously reported in the scientific literature.
View Article and Find Full Text PDFOne of the primary challenges of our time is to feed a growing and more demanding world population with reduced external inputs and minimal environmental impacts, all under more variable and extreme climate conditions in the future. Conservation agriculture represents a set of three crop management principles that has received strong international support to help address this challenge, with recent conservation agriculture efforts focusing on smallholder farming systems in sub-Saharan Africa and South Asia. However, conservation agriculture is highly debated, with respect to both its effects on crop yields and its applicability in different farming contexts.
View Article and Find Full Text PDFAgriculture is inherently risky. Drought is a particularly troublesome hazard that has a documented adverse impact on agricultural development. A long history of decision-support tools have been developed to try and help farmers or policy makers manage risk.
View Article and Find Full Text PDFDifferences in the binding affinities of bisphosphonates for bone mineral have been proposed to determine their localizations and duration of action within bone. The main objective of this study was to test the hypothesis that mineral binding affinity affects bisphosphonate distribution at the basic multicellular unit (BMU) level within both cortical and cancellous bone. To accomplish this objective, skeletally mature female rabbits (n = 8) were injected simultaneously with both low- and high-affinity bisphosphonate analogs bound to different fluorophores.
View Article and Find Full Text PDFBisphosphonates are widely used antiresorptive drugs that bind to calcium. It has become evident that these drugs have differing affinities for bone mineral; however, it is unclear whether such differences affect their distribution on mineral surfaces. In this study, fluorescent conjugates of risedronate, and its lower-affinity analogues deoxy-risedronate and 3-PEHPC, were used to compare the localization of compounds with differing mineral affinities in vivo.
View Article and Find Full Text PDFThe ability of bisphosphonates ((HO)(2)P(O)CR(1)R(2)P(O)(OH)(2)) to inhibit bone resorption has been known since the 1960s, but it is only recently that a detailed molecular understanding of the relationship between chemical structures and biological activity has begun to emerge. The early development of chemistry in this area was largely empirical and based on modifying R(2) groups in a variety of ways. Apart from the general ability of bisphosphonates to chelate Ca(2+) and thus target the calcium phosphate mineral component of bone, attempts to refine clear structure-activity relationships had led to ambiguous or seemingly contradictory results.
View Article and Find Full Text PDFBisphosphonates are effective antiresorptive agents owing to their bone-targeting property and ability to inhibit osteoclasts. It remains unclear, however, whether any non-osteoclast cells are directly affected by these drugs in vivo. Two fluorescent risedronate analogues, carboxyfluorescein-labeled risedronate (FAM-RIS) and Alexa Fluor 647-labeled risedronate (AF647-RIS), were used to address this question.
View Article and Find Full Text PDFJ Med Chem
May 2010
3-(3-Pyridyl)-2-hydroxy-2-phosphonopropanoic acid (3-PEHPC, 1) is a phosphonocarboxylate (PC) analogue of 2-(3-pyridyl)-1-hydroxyethylidenebis(phosphonic acid) (risedronic acid, 2), an osteoporosis drug that decreases bone resorption by inhibiting farnesyl pyrophosphate synthase (FPPS) in osteoclasts, preventing protein prenylation. 1 has lower bone affinity than 2 and weakly inhibits Rab geranylgeranyl transferase (RGGT), selectively preventing prenylation of Rab GTPases. We report here the synthesis and biological studies of 2-hydroxy-3-imidazo[1,2-a]pyridin-3-yl-2-phosphonopropionic acid (3-IPEHPC, 3), the PC analogue of minodronic acid 4.
View Article and Find Full Text PDFJ Bone Miner Res
January 2010
Nonvertebral fractures account for 80% of all fractures and their accompanying morbidity and mortality. Despite this, the effect of drug therapy on cortical morphology has received limited attention, partly because cortical bone is believed to remodel less and decrease less with age than trabecular bone. However, the haversian canals traversing the cortex provide a surface for remodeling that produces bone loss, porosity, and cortical fragility.
View Article and Find Full Text PDFBisphosphonates bind avidly to bone mineral and are potent inhibitors of osteoclast-mediated bone destruction. They also exhibit antitumor activity in vitro. Here, we used a mouse model of human breast cancer bone metastasis to examine the effects of risedronate and NE-10790, a phosphonocarboxylate analogue of the bisphosphonate risedronate, on osteolysis and tumor growth.
View Article and Find Full Text PDFAnn N Y Acad Sci
November 2007
The bisphosphonates (BPs) are well established as the treatments of choice for disorders of excessive bone resorption, including Paget's disease of bone, myeloma and bone metastases, and osteoporosis. There is considerable new knowledge about how BPs work. Their classical pharmacological effects appear to result from two key properties: their affinity for bone mineral and their inhibitory effects on osteoclasts.
View Article and Find Full Text PDFThe study was designed to investigate if pre-treating rats with a therapeutic equivalent dose of risedronate blunted the anabolic effects of PTH, and whether a withdrawal period prior to PTH treatment would alter any effect of risedronate on PTH treatment. Skeletally mature rats were treated for 18 weeks with vehicle, risedronate, or risedronate for 8 weeks followed by vehicle for 10 weeks (withdrawal period). At the end of this period, animals were treated for a further 12 weeks with PTH or PTH vehicle.
View Article and Find Full Text PDFA series of prostaglandins selective for the human FP receptor have been synthesized and evaluated as potential therapeutics for the treatment of osteoporosis. The compounds proved to be potent (nanomolar binding affinity) and selective (> 100x) ligands for the human FP receptor in vitro, and increased bone volume in the ovariectomized rat in vivo.
View Article and Find Full Text PDF