Publications by authors named "Lijie Gu"

During homeostasis and regeneration, satellite cells, the resident stem cells of skeletal muscle, have distinct metabolic requirements for fate transitions between quiescence, proliferation and differentiation. However, the contribution of distinct energy sources to satellite cell metabolism and function remains largely unexplored. Here, we uncover a role of mitochondrial fatty acid oxidation (FAO) in satellite cell integrity and function.

View Article and Find Full Text PDF
Article Synopsis
  • * CPT1A is found to be most active in quiescent SCs and decreases as these cells become active, with overexpression of CPT1A in muscle cells leading to reduced muscle strength and regeneration capabilities.
  • * Increased levels of acyl-carnitine, resulting from elevated CPT1A, negatively impact SC proliferation and function, suggesting a critical balance of fatty acid metabolism is essential for SC maintenance and muscle repair.
View Article and Find Full Text PDF

Cholestasis is a chronic liver disease with limited therapeutic options. Hydrophobic bile acid-induced hepatobiliary injury is a major pathological driver of cholestasis progression. This study investigates the anti-cholestasis efficacy and mechanisms of action of glycine-conjugated β-muricholic acid (Gly-β-MCA).

View Article and Find Full Text PDF
Article Synopsis
  • Bile acids are crucial for liver health, acting not only as detergents but also as signaling molecules, with dysregulation leading to chronic liver diseases.
  • Therapeutic approaches that focus on bile acid synthesis and signaling show promise for treating these conditions, but understanding their broader cellular impacts is still a work in progress.
  • Recent studies highlight how bile acid signaling interacts with processes like autophagy and stress response, which are vital for cellular health, particularly in the context of chronic liver disease.
View Article and Find Full Text PDF
Article Synopsis
  • * This study introduces a nickel-catalyzed method for these coupling reactions, successfully creating chiral amines with high enantioselectivity and decent linear selectivity.
  • * The method works well with a variety of aliphatic alkenes, including those from biologically active compounds, thanks to new chiral spiro phosphine ligands that enhance the reaction.
View Article and Find Full Text PDF

Cullin RING E3 ligases (CRL) have emerged as key regulators of disease-modifying pathways and therapeutic targets. Cullin3 (Cul3)-containing CRL (CRL3) has been implicated in regulating hepatic insulin and oxidative stress signaling. However, CRL3 function in liver pathophysiology is poorly defined.

View Article and Find Full Text PDF

Liver is a major organ that metabolizes sulfur amino acids cysteine, which is the substrate for the synthesis of many essential cellular molecules including GSH, taurine, and coenzyme A. Bile acid-activated farnesoid x receptor (FXR) inhibits cysteine dioxygenase type 1 (CDO1), which mediates hepatic cysteine catabolism and taurine synthesis. To define the impact of bile acid inhibition of CDO1 on hepatic sulfur amino acid metabolism and antioxidant capacity, we developed hepatocyte-specific CDO1 knockout mice (Hep-CDO1 KO) and hepatocyte specific CDO1 transgenic mice (Hep-CDO1 Tg).

View Article and Find Full Text PDF

knockout mice lack the enzyme that produces muricholic acids and show a "human-like" hydrophobic bile acid pool-induced hepatobiliary injury. In this study, we investigated the potential anti-cholestasis effect of glycine-conjugated β muricholic acid (G-β-MCA) in male KO mice based on its hydrophilic physiochemical property and signaling property as an farnesoid X receptor (FXR) antagonist. Our results showed that G-β-MCA treatment for 5 weeks alleviated ductular reaction and liver fibrosis and improved gut barrier function.

View Article and Find Full Text PDF

Background: Malnutrition-inflammation-atherosclerosis (MIA) syndrome may worsen the prognosis of peritoneal dialysis (PD) patients. Serum thymosin β4 (sTβ4) protects against inflammation, fibrosis and cardiac dysfunction.

Objectives: The present study aimed to characterize the association between sTβ4 and MIA syndrome as well as to investigate the potential of regulating sTβ4 to improve the prognosis of PD patients.

View Article and Find Full Text PDF

Background: The impact of the degree of worsening renal function (WRF) and B-type natriuretic peptide (BNP) on the prognosis of patients with acute heart failure (AHF) is still debatable. The present study investigated the influence of different degrees of WRF and BNP levels at discharge on 1-year all-cause mortality in AHF.

Methods: Hospitalized AHF patients diagnosed with acute new-onset/worsening of chronic heart failure (HF) between January 2015 and December 2019 were included in this study.

View Article and Find Full Text PDF
Article Synopsis
  • Research shows that combining a gut-restricted ASBT inhibitor (GSK) with liver FGF15 overexpression offers better results for treating NASH than single therapies.
  • The study aimed to see if pairing GSK with the oral drug obeticholic acid (OCA) could replicate these benefits.
  • Results indicated that while the combination treatment reduced bile acid levels more than either drug alone, it did not significantly improve obesity or fat in the liver, although it did lower inflammation and fibrosis.
View Article and Find Full Text PDF

Therapeutic reduction of hydrophobic bile acids exposure is considered beneficial in cholestasis. The Cyp2c70 KO mice lack hydrophilic muricholic acids and have a human-like hydrophobic bile acid pool resulting in hepatobiliary injury. This study investigates if combining an apical sodium-dependent bile acid transporter inhibitor GSK2330672 (GSK) and fibroblast growth factor-15 (FGF15) overexpression, via simultaneous inhibition of bile acid synthesis and gut bile acid uptake, achieves enhanced therapeutic efficacy in alleviating hepatobiliary injury in Cyp2c70 KO mice.

View Article and Find Full Text PDF

Background: Diabetic kidney disease (DKD) is a leading cause of kidney failure worldwide. Anxiety has been associated with disease progression in non-diabetes patients. We aimed to examine the prospective association between anxiety and progression of DKD in type 2 diabetes.

View Article and Find Full Text PDF

Interleukin-6 (IL-6)/soluble IL-6 receptor (sIL-6R) promotes peritoneal angiogenesis by stimulating SP4-mediated vascular endothelial growth factor (VEGF) production in peritoneal dialysis (PD). Moreover, histone methyltransferase enhancer of zeste homologue 2 (EZH2) is involved in IL-6/sIL-6R signalling via the acceleration of vascular endothelial growth factor (VEGF)-induced angiogenesis. However, the molecular mechanism underlying how EZH2 epigenetically activates VFGF expression in IL-6/sIL-6R signalling during PD is still unclear.

View Article and Find Full Text PDF

We report an efficient alkyl transfer strategy for the direct β-alkylation of chalcones using commercially available alkyl bromides as alkyl reagents. In this transformation, the -phosphanyl substituent in the chalcones is crucial for controlling their reactivity and selectivity. It also serves as a reliable alkyl transfer shuttle to transform electrophilic alkyl bromides into nucleophilic alkyl species in the form of quaternary phosphonium salts and transfer the alkyl group effectively to the β-position of the chalcones.

View Article and Find Full Text PDF

Aim: Nutrition is an important part of the care of patients with chronic kidney disease (CKD). However, there is limited clinical research on the skeletal muscle nutrition of patients with CKD. We carried out this study to find out whether a low-protein diet supplemented with ketoacids (LPD + KA) could improve muscle wasting in patients with CKD.

View Article and Find Full Text PDF

Fatty liver is a highly heterogenous condition driven by various pathogenic factors in addition to the severity of steatosis. Protein insufficiency has been causally linked to fatty liver with incompletely defined mechanisms. Here we report that fatty liver is a sulfur amino acid insufficient state that promotes metabolic inflexibility via limiting coenzyme A availability.

View Article and Find Full Text PDF

The Chchd10 gene encodes a coiled-coil-helix-coiled-coil-helix-domain containing protein predicted to function in the mitochondrion and nucleus. Mutations of Chchd10 are associated with ALS, dementia and myopathy in humans and animal models, but how knockout of Chchd10 (Chchd10) affects various tissues especially skeletal muscle and adipose tissues remains unclear. Here we show that Chchd10 expression increases as myoblasts and preadipocytes differentiate.

View Article and Find Full Text PDF

We report an unexpected dearomative periphery modification strategy for transforming quinolinium salts into structurally crowded pyrrolidine-tetrahydroquinoline polycyclic systems with complete regio- and diastereoselectivity. Importantly, the reaction pathway was regulated by simply tuning the substituents, achieving substituent-directed divergent synthesis. The notable features of this transformation include readily available starting materials, green conditions, a simple workup procedure, high bond- and ring-forming efficiency, and substituent-directed diverse synthesis.

View Article and Find Full Text PDF

Hepatic insulin resistance is a hallmark feature of nonalcoholic fatty liver disease and type-2 diabetes and significantly contributes to systemic insulin resistance. Abnormal activation of nutrient and stress-sensing kinases leads to serine/threonine phosphorylation of insulin receptor substrate (IRS) and subsequent IRS proteasome degradation, which is a key underlying cause of hepatic insulin resistance. Recently, members of the cullin-RING E3 ligases (CRLs) have emerged as mediators of IRS protein turnover, but the pathophysiological roles and therapeutic implications of this cellular signaling regulation is largely unknown.

View Article and Find Full Text PDF

Objectives: Insulin resistance in chronic kidney disease (CKD) stimulates muscle wasting, but the molecular processes behind the resistance are undetermined. However, inflammation in skeletal muscle is implicated in the pathogenesis of insulin resistance and cachexia. Toll-like receptors (TLRs) are known to regulate local innate immune responses, and microarray data have shown that Tlr13 is upregulated in the muscles of mice with CKD, but the relevance is unknown.

View Article and Find Full Text PDF

The lipid droplet (LD) is a central hub for fatty acid metabolism in cells. Here we define the dynamics and explore the role of LDs in skeletal muscle satellite cells (SCs), a stem cell population responsible for muscle regeneration. In newly divided SCs, LDs are unequally distributed in sister cells exhibiting asymmetric cell fates, as the LD cell self-renews while the LD cell commits to differentiation.

View Article and Find Full Text PDF

Simultaneous deconstructive ring-opening and skeletal reconstruction of an inert, aromatic pyridinium ring is of great importance in synthetic communities. However, research in this area is still in its infancy. Here, a skeletal re-modeling strategy was developed to transform chalcone-based pyridinium salts into structurally intriguing polycyclic isoindolines through a dearomative ring-opening/ring-closing sequence.

View Article and Find Full Text PDF

Peritoneal angiogenesis is the key pathophysiological factor that limits peritoneal ultrafiltration during peritoneal dialysis (PD) in uremic patients. Thalidomide has been confirmed to inhibit angiogenesis by inhibiting the secretion of vascular endothelial growth factor (VEGF), but the exact mechanism by which thalidomide inhibits vascular proliferation during PD is still unclear. Here, the objective of the present study was to investigate whether the reduction in VEGF production by human peritoneal mesothelial cells (HPMCs) was controlled by thalidomide.

View Article and Find Full Text PDF