Accurate short-term wind speed prediction is crucial for maintaining the safe, stable, and efficient operation of wind power systems. We propose a multivariate meteorological data fusion wind prediction network (MFWPN) to study fine-grid vector wind speed prediction, taking Northeast China as an example. Results show that MFWPN outperforms the ECMWF-HRES model regarding vector wind speed prediction accuracy within the first 6 h.
View Article and Find Full Text PDFBearings are critical in mechanical systems, as their health impacts system reliability. Proactive monitoring and diagnosing of bearing faults can prevent significant safety issues. Among various diagnostic methods that analyze bearing vibration signals, deep learning is notably effective.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Weather prediction is of great significance for human daily production activities, global extreme climate prediction, and environmental protection of the Earth. However, the existing data-based weather prediction methods cannot adequately capture the spatial and temporal evolution characteristics of the target region, which makes it difficult for the existing methods to meet practical application requirements in terms of efficiency and accuracy. Changes in weather involve both strongly correlated spatial and temporal continuation relationships, and at the same time, the variables interact with each other, so capturing the dynamic correlations among space, time, and variables is particularly important for accurate weather prediction.
View Article and Find Full Text PDF