Science
March 2025
The sense of touch conveys critical environmental information, facilitating object recognition, manipulation, and social interaction, and can be engineered through haptic actuators that stimulate cutaneous receptors. An unfulfilled challenge lies in haptic interface technologies that can engage all the various mechanoreceptors in a programmable, spatiotemporal fashion across large areas of the body. Here, we introduce a small-scale actuator technology that can impart omnidirectional, superimposable, dynamic forces to the surface of skin, as the basis for stimulating individual classes of mechanoreceptors or selected combinations of them.
View Article and Find Full Text PDFNature
November 2024
The rich set of mechanoreceptors found in human skin offers a versatile engineering interface for transmitting information and eliciting perceptions, potentially serving a broad range of applications in patient care and other important industries. Targeted multisensory engagement of these afferent units, however, faces persistent challenges, especially for wearable, programmable systems that need to operate adaptively across the body. Here we present a miniaturized electromechanical structure that, when combined with skin as an elastic, energy-storing element, supports bistable, self-sensing modes of deformation.
View Article and Find Full Text PDFElectrodermal activity (EDA) is a popular index of mental stress. State-of-the-art EDA sensors suffer from obstructiveness on the palm or low signal fidelity off the palm. Our previous invention of sub-micron-thin imperceptible graphene e-tattoos (GET) is ideal for unobstructive EDA sensing on the palm.
View Article and Find Full Text PDFSoft Matter
November 2022
E-skins consisting of soft pressure sensors are enabling technology for soft robots, bio-integrated devices, and deformable touch panels. A well-known bottleneck of capacitive pressure sensors (CPS) is the drastic decay in sensitivity with increasing pressure. To overcome this challenge, we have invented a hybrid-response pressure sensor (HRPS) that exhibits both the piezoresistive and piezocapacitive effects intrinsic to a highly porous nanocomposite (PNC) with carbon nanotube (CNT) dopants.
View Article and Find Full Text PDFSoft pressure sensors are critical components of e-skins, which are playing an increasingly significant role in two burgeoning fields: soft robotics and bioelectronics. Capacitive pressure sensors (CPS) are popular given their mechanical flexibility, high sensitivity, and signal stability. After two decades of rapid development, e-skins based on soft CPS are able to achieve human-skin-like softness and sensitivity.
View Article and Find Full Text PDFPast research aimed at increasing the sensitivity of capacitive pressure sensors has mostly focused on developing dielectric layers with surface/porous structures or higher dielectric constants. However, such strategies have only been effective in improving sensitivities at low pressure ranges (e.g.
View Article and Find Full Text PDFAnnu Rev Chem Biomol Eng
June 2021
High-performance wearable and implantable devices capable of recording physiological signals and delivering appropriate therapeutics in real time are playing a pivotal role in revolutionizing personalized healthcare. However, the mechanical and biochemical mismatches between rigid, inorganic devices and soft, organic human tissues cause significant trouble, including skin irritation, tissue damage, compromised signal-to-noise ratios, and limited service time. As a result, profuse research efforts have been devoted to overcoming these issues by using flexible and stretchable device designs and soft materials.
View Article and Find Full Text PDFOctopus-inspired cratered surfaces have recently emerged as a new class of reusable physical adhesives. Preload-dependent adhesion and enhanced adhesion under water distinguish them from the well-studied gecko-inspired pillared surfaces. Despite growing experimental evidence, modeling frameworks and mechanistic understanding of cratered surfaces are still very limited.
View Article and Find Full Text PDFWe investigate temperature characteristics of 445-nm-emitting InGaN blue laser diodes (LDs) with several types of active-layer structures. The double quantum-well (QW) LD structures having an n-type doped barrier show negative or very high characteristic temperature depending on the barrier In composition. On the contrary, the double QW structures having an undoped barrier and the single QW structure show normal temperature dependence of LD characteristics.
View Article and Find Full Text PDF