Transcranial focused ultrasound is a promising non-invasive method for neuromodulation, particularly for neurodegenerative and psychiatric conditions. However, its use in wearable systems has been limited due to bulky devices and reliance on ultrasound gel, which dehydrates and lacks stable adhesion for long-term use. Here, we present a miniaturized wearable ultrasound device, comparable in size to standard electrophysiological electrodes, integrated with a bioadhesive hydrogel for stable, long-term somatosensory cortical stimulation.
View Article and Find Full Text PDFThe human body continuously emits physiological and psychological information from head to toe. Wearable electronics capable of noninvasively and accurately digitizing this information without compromising user comfort or mobility have the potential to revolutionize telemedicine, mobile health, and both human-machine or human-metaverse interactions. However, state-of-the-art wearable electronics face limitations regarding wearability and functionality due to the mechanical incompatibility between conventional rigid, planar electronics and soft, curvy human skin surfaces.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2023
Surface electromyography (sEMG) is a commonly used technique for the non-invasive measurement of muscle activity. However, the traditional electrodes used for sEMG often have limitations regarding their long-term wearability. This study explored the feasibility of a wearable platform using a tattoo-like epidermal electrode (e-tattoo) for multi-day sEMG monitoring.
View Article and Find Full Text PDFSoft pressure sensors are critical components of e-skins, which are playing an increasingly significant role in two burgeoning fields: soft robotics and bioelectronics. Capacitive pressure sensors (CPS) are popular given their mechanical flexibility, high sensitivity, and signal stability. After two decades of rapid development, e-skins based on soft CPS are able to achieve human-skin-like softness and sensitivity.
View Article and Find Full Text PDFSeismocardiography (SCG) is a measure of chest vibration associated with heartbeats. While skin soft electronic tattoos (e-tattoos) have been widely reported for electrocardiogram (ECG) sensing, wearable SCG sensors are still based on either rigid accelerometers or non-stretchable piezoelectric membranes. This work reports an ultrathin and stretchable SCG sensing e-tattoo based on the filamentary serpentine mesh of 28-µm-thick piezoelectric polymer, polyvinylidene fluoride (PVDF).
View Article and Find Full Text PDF