Publications by authors named "Kunwei Niu"

Sepsis is a systemic inflammatory response syndrome caused by infection, and early management of both the infection and the excessive inflammatory response is key to its treatment. In this study, we designed a nanoformulation, termed AuNPs-Mixed, to control bacterial infection and modulate the excessive inflammatory response. AuNPs-Mixed was prepared by equimolarly combining four nanoparticle formulations, each consisting of gold nanoparticles (AuNPs) conjugated separately with mannose-binding lectin (MBL) and three different antibodies targeting pro-inflammatory cytokines: interleukin 6 (IL-6), interleukin 1β (IL-1β), and tumor necrosis factor alpha (TNF-α).

View Article and Find Full Text PDF

Background: The liver, gallbladder, and pancreas constitute a critically important system of digestive and endocrine organs in the human body, performing essential and complex physiological functions. At present, diseases of this digestive system have a high incidence in the world and is a more common disease. However, osteopontin (OPN) plays a crucial role in common liver, pancreatic, and biliary diseases, and its mechanisms of action merit further exploration and study.

View Article and Find Full Text PDF

Background & Aims: Intrahepatic cholangiocarcinoma (iCCA) is a fatal malignancy of the biliary system. The lack of a detailed understanding of oncogenic signaling or global gene expression alterations has impeded clinical iCCA diagnosis and therapy. The role of protein lactylation, a newly unraveled post-translational modification that orchestrates gene expression, remains largely elusive in the pathogenesis of iCCA.

View Article and Find Full Text PDF

Objective: Histone deacetylase inhibitors (HDACIs) have been reported to improve survival in rats with hemorrhagic shock (HS). However, no consensus exists on the most effective HDACIs and their administration routes. We herein aimed to determine the optimal HDACIs and administration route in rats with HS.

View Article and Find Full Text PDF

Introduction: The effects of isoform-specific histone deacetylase inhibitors (HDACIs) and the non-selective HDACI on sepsis have been profoundly reported. However, the best HDAC classes have not been fully evaluated. Therefore, this study aimed to determine which HDACIs are responsible for survival and beneficial for organ injury.

View Article and Find Full Text PDF

Aims: The cell adhesion molecules (CAMs) that mediate neutrophil-endothelium cell adhesion are deeply involved in the pathogenesis of acute lung injury (ALI). B-cell receptor associated protein 31 (BAP31) has been reported to engage in the expression of some CAMs. This study was undertaken to explore whether BAP31 in endotheliocyte affects the pathological process of ALI by regulating CAMs, and its possible mechanism.

View Article and Find Full Text PDF

Acute lung injury (ALI) and its more severe condition acute respiratory distress syndrome (ARDS) are critical life-threatening disorders characterized by an excessive influx of neutrophils into the alveolar space. Neutrophil infiltration is a multi-step process involving the sequential engagement of adhesion molecules. The adhesion molecule CD11b/CD18 acts as an important role in the recruitment of neutrophils to lung tissues in the ALI model.

View Article and Find Full Text PDF

Previously, we reported that B cell receptor associated protein 31 (BAP31) is a positive regulator on T-cells activation. Helper T cells [cluster of differentiation 4 (CD4) T cells] can regulate macrophage activation in adaptive immune response against pathogens. In this study, we elucidate that M1 and M2 macrophages polarization is significantly suppressed in Lck Cre-BAP31 mice or the co-culture system of CD4 T cells from Lck Cre-BAP31 mice and macrophages from WT mice.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is often diagnosed at a late stage, when the prognosis is poor. The regulation of long noncoding RNAs (lncRNAs) plays a crucial role in HCC. However, the precise regulatory mechanisms of lncRNA signaling in HCC remain largely unknown.

View Article and Find Full Text PDF

Sepsis is a life-threatening organ dysfunction syndrome, and liver is a susceptible target organ in sepsis, because the activation of inflammatory pathways contributes to septic liver injury. Oxidative stress has been documented to participate in septic liver injury, because it not only directly induces oxidative genotoxicity, but also exacerbates inflammatory pathways to potentiate damage of liver. Therefore, to ameliorate oxidative stress is promising for protecting liver in sepsis.

View Article and Find Full Text PDF

Long noncoding RNAs (lncRNAs) represent an emerging field of tumor biology, playing essential roles in cancer cell proliferation, invasion, and metastasis. However, the overall functional and clinical significance of most lncRNAs in pancreatic cancer is not thoroughly understood. Here, we described most of the lncRNAs with aberrant expression patterns in pancreatic cancer as detected by microarray.

View Article and Find Full Text PDF

Aim: We aimed to identify the roles of circRHOT1 in pancreatic cancer.

Materials & Methods: The circRHOT1 was acquired from our previous study followed by quantitative real-time PCR and fluorescence in situ hybridization validation in pancreatic cancer. We used siRNA and shRNA to explore the function of circRHOT1 in pancreatic cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • Hepatocellular carcinoma (HCC) is a type of liver cancer with a high incidence and poor outcomes, and sorafenib is the only approved treatment that can improve survival but often faces primary resistance.
  • Research found that the stress-inducible protein Sestrin2 (SESN2) is significantly increased in HCC cells and tissues, suggesting a link to sorafenib resistance.
  • The study indicates that SESN2 contributes to this resistance by activating important signaling pathways (AKT and AMPK) after sorafenib treatment, highlighting its potential role as a target for overcoming treatment resistance in HCC.
View Article and Find Full Text PDF

Objective To explore the role of sestrin2 (SESN2) in sorafenib primary resistance and the underlying mechanism in hepatocellular carcinoma (HCC) cells. Methods Real-time quantitative PCR (qRT-PCR) and Western blot analysis were performed to examine SESN2 mRNA and protein levels in Bel-7404, SNU-398, HLE, HLF and Hep3B cell lines. Immunohistochemical staining was used to detect SESN2 expression in HCC tissues.

View Article and Find Full Text PDF

BAP31 is a ubiquitously expressed endoplasmic reticulum (ER) membrane protein. The functions of BAP31 in the immune system have not been investigated due to the lack of animal models. Therefore we created a BAP31 conditional knockdown mouse by performing a knockdown of BAP31 in the thymus.

View Article and Find Full Text PDF

Autoimmune regulator (Aire) mutations result in autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED), which manifests as multi-organ autoimmunity and chronic mucocutaneous candidiasis (CMC). Indendritic cells (DCs), pattern recognition receptors (PRR), such as Toll-like receptors (TLRs), are closely involved in the recognition of various pathogens, activating the intercellular signaling pathway, followed by the activation of transcription factors and the expression of downstream genes, which take part in mediating the immune response and maintaining immune tolerance. In this study, we found that Aire up-regulated TLR3 expression and modulated the downstream cytokine expression and nuclear factor-κB (NF-κB) of the TLR3 signaling pathway.

View Article and Find Full Text PDF

Autoimmune regulator (Aire) can promote the ectopic expression of peripheral tissue-restricted antigens (TRAs) in thymic medullary epithelial cells (mTECs), which leads to the deletion of autoreactive T cells and consequently prevents autoimmune diseases. However, the functions of Aire in the periphery, such as in dendritic cells (DCs), remain unclear. This study's aim was to investigate the effect of Aire-overexpressing DCs (Aire cells) on the functions of CD4⁺ T cells and the treatment of type 1 diabetes (T1D).

View Article and Find Full Text PDF