Biomacromolecules
August 2025
Due to the limited functional groups on poly(ethylene glycol) (PEG) terminals, hydrogels are usually prepared by PEG chains with multiple arms. It is challenging for the preparation of hydrogels using linear PEG. Herein, we report the light-triggered synthesis of hydrogels composed of linear PEG with bis-maleimide groups.
View Article and Find Full Text PDFBiomacromolecules
October 2024
Glioblastoma multiforme (GBM) is the most aggressive and lethal form of human brain tumors. Dismantling the suppressed immune microenvironment is an effective therapeutic strategy against GBM; however, GBM does not respond to exogenous immunotherapeutic agents due to low immunogenicity. Manipulating the mitochondrial electron transport chain (ETC) elevates the immunogenicity of GBM, rendering previously immune-evasive tumors highly susceptible to immune surveillance, thereby enhancing tumor immune responsiveness and subsequently activating both innate and adaptive immunity.
View Article and Find Full Text PDFAdv Healthc Mater
September 2023
Nanovaccine-based immunotherapy can initiate strong immune responses and establish a long-term immune memory to prevent tumor invasion and recurrence. Herein, the assembly of redox-responsive antigen nanoparticles (NPs) conjugated with imidazoquinoline-based TLR7/8 agonists for lymph node-targeted immune activation is reported, which can potentiate tumor therapy and prevention. Antigen NPs are assembled via the templating of zeolitic imidazolate framework-8 NPs to cross-link ovalbumin with disulfide bonds, which enables the NPs with redox-responsiveness for improved antigen cross-presentation and dendritic cell activation.
View Article and Find Full Text PDFPolyethylene glycol (PEG) has been widely used for modifying surfaces to reduce non-specific interactions with biomolecules, microorganisms, and cells. Herein, we report a sticktight-inspired PEGylation strategy to fabricate low-fouling coatings. The influence of PEG molecular architectures on the PEG density and biological adhesion were studied.
View Article and Find Full Text PDFPolymers (Basel)
August 2022
This paper aims to investigate the influence of thermal aging on a crosslinked polyethylene (XLPE) cable, and the relationships between the macroscopical high-voltage dielectric and the microscopical physicochemical properties are also elucidated. To better simulate thermal aging under working condition, the medium-voltage-level cable is subjected to accelerated inner thermal aging for different aging times. Then, high-voltage frequency domain spectroscopy (FDS) (cable sample) and analyses of microscopic physical and chemical properties (sampling from the cable), including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and elongation at the break (EAB), are conducted at different cable aging stages.
View Article and Find Full Text PDFChem Commun (Camb)
July 2022
Quantitative and accurate determination of iron ions play a vital role in maintaining environment and human health, but very few polymeric chemosensors were available for the detection of Fe in aqueous solutions. Herein, a water-soluble rhodamine-poly (ethylene glycol) conjugate (DRF-PEG), as a dual responsive colorimetric and fluorescent polymeric sensor for Fe detection with high biocompatibility, was first synthesized through Schiff base reaction between rhodamine 6G hydrazide and benzaldehyde-functionalized polyethylene glycol. As expected, the introduction of PEG segment in DRF-PEG significantly improved the water solubility of rhodamine derivatives and resulted in a good biosensing performance.
View Article and Find Full Text PDFJ Colloid Interface Sci
March 2022
Hypothesis: In living systems, dynamic processes like dissipative assembly, polymorph formation, and destabilization of hydrophobic domains play an indispensable role in the biochemical processes. Adaptation of biological self-assembly processes to an amphiphilic molecule leads to the fabrication of intelligent biomaterials with life-like behavior.
Experiments: An amphiphilic glycolipid molecule was engineered into various dissipative assemblies (vesicles and supramolecular nanotube-composed hydrogels) by using two activation steps, including heating-cooling and shear force in method-1 or boric acid/glycolipid complexation and shear force in method-2.
Angew Chem Int Ed Engl
September 2021
We report a sono-Fenton strategy to mediate the supramolecular assembly of metal-phenolic networks (MPNs) as substrate-independent coatings using phenol and phenyl derivatives as building blocks. The assembly process is initiated from the generation of hydroxyl radicals ( OH) using high-frequency ultrasound (412 kHz), while the metal ions synergistically participate in the production of additional OH for hydroxylation/phenolation of phenol and phenyl derivatives via the Fenton reaction and also coordinate with the phenolic compounds for film formation. The coating strategy is applicable to various phenol and phenyl derivatives and different metal ions including Fe , Fe , Cu , and Co .
View Article and Find Full Text PDFFront Cardiovasc Med
May 2021
Chronic kidney disease (CKD) and cardiovascular disease (CVD) have a high morbidity and mortality among the elderly. Low levels of high-density lipoprotein cholesterol (HDL-C), a traditional risk marker for CVD, are common in CKD patients. Little is known about the association of low HDL-C with renal dysfunction in the community dwelling population.
View Article and Find Full Text PDFPolydopamine (PDA) coating of surfaces is a versatile strategy to fabricate functional films on various substrates, which typically requires oxygen and alkaline pH. Overcoming such limitations may enhance the versatility of this technique. Herein, we develop a simple and green sonochemical process for PDA coatings, which overcomes the limitations of traditional coating technique and expands the versatility of PDA chemistry.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
July 2020
Drug repositioning is an efficient and promising strategy to identify new indications for existing drugs, which can improve the productivity of traditional drug discovery and development. Rapid advances in high-throughput technologies have generated various types of biomedical data over the past decades, which lay the foundations for furthering the development of computational drug repositioning approaches. Although many researches have tried to improve the repositioning accuracy by integrating information from multiple sources and different levels, it is still appealing to further investigate how to efficiently exploit valuable data for drug repositioning.
View Article and Find Full Text PDFRadiosensitizer plays an important role in the cancer radiotherapy for efficient killing of hypoxic cancer cells at a low radiation dose. However, the commercially available small molecular radiosensitizers show low efficiency due to poor bioavailability in tumor tissues. In this report, we develop a novel amphiphilic block copolymer radiosensitizer, metronidazole-conjugated poly(ethylene glycol)--poly(γ-propargyl-l-glutamate) (PEG--P(PLG--MN)), which can be self-assembled into core-shell micelles (MN-Micelle) with an optimal size of ∼60 nm in aqueous solution.
View Article and Find Full Text PDFMotivation: Increasing evidences have demonstrated that long noncoding RNAs (lncRNAs) play important roles in many human diseases. Therefore, predicting novel lncRNA-disease associations would contribute to dissect the complex mechanisms of disease pathogenesis. Some computational methods have been developed to infer lncRNA-disease associations.
View Article and Find Full Text PDFConstruction of efficient doxorubicin (DOX) delivery systems addressing a cascade of physiological barriers remains a great challenge for better therapeutic efficacy of tumors. Herein, we design well-defined enzyme-responsive peptide-linked block copolymer, PEG-GPLGVRGDG-P(BLA-co-Asp) [PEG and P(BLA-co-Asp) are poly(ethylene glycol) and partially hydrolyzed poly(β-benzyl l-aspartate) (PBLA), respectively] (P3), with modular functionality for efficient delivery of DOX. The block copolymers were successfully obtained via click reaction to introduce peptide (alkynyl-GPLGVRGDG) into the end of PEG for initiating ring-opening polymerization of β-benzyl l-aspartate N-carboxyanhydride (BLA-NCA) by terminal amino groups followed by partial hydrolysis of PBLA segments.
View Article and Find Full Text PDFDirect encapsulation of hydrophobic drugs into amphiphilic block copolymer micelles is frequently subjected to low drug loading efficiency (DLE) and loading content (DLC), as well as lower micellar stability and uncontrollable drug release. In this report, we prepare the copolymer prodrugs (PPEMA-co-PCPTM) via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(piperidin-1-yl)ethyl methacrylate (PEMA) and reduction-responsive CPT monomer (CPTM), which were quantitatively encapsulated into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) micelles. The polymer prodrug-loaded nanoparticles showed high stability for a long time in aqueous solution or blood serum and even maintain similar size after a lyophilization-dissolution cycle.
View Article and Find Full Text PDF