Today Lithium (Li)-ion batteries are ubiquitous from portable electronics to electric vehicles and grid energy storage. However, Li-ion technology may not be sustainable in the long run; Li is scarce and comprises <0.0065% of the earth's crust.
View Article and Find Full Text PDFAtom probe tomography (APT) and (scanning) transmission electron microscopy ((S)TEM) are complementary techniques that provide spatially resolved chemical and structural information at the atomic scale. In this study, we employ two different STEM/APT correlative analysis methods to investigate Cr segregation at dislocation loops in ultra-high purity Fe-Cr alloys. APT needles for the correlative analysis were extracted either from bulk material or from thinned TEM lamellae.
View Article and Find Full Text PDFMicrosc Microanal
February 2025
Micromachines (Basel)
September 2023
Ion implantation is a key capability for the semiconductor industry. As devices shrink, novel materials enter the manufacturing line, and quantum technologies transition to being more mainstream. Traditional implantation methods fall short in terms of energy, ion species, and positional precision.
View Article and Find Full Text PDFUnderstanding and controlling the structure and composition of nanoparticles in supported metal catalysts are crucial to improve chemical processes. For this, atom probe tomography (APT) is a unique tool, as it allows for spatially resolved three-dimensional chemical imaging of materials with sub-nanometer resolution. However, thus far APT has not been applied for mesoporous oxide-supported metal catalyst materials, due to the size and number of pores resulting in sample fracture during experiments.
View Article and Find Full Text PDFMicro- and nanoscale information on the activating and deactivating coking behaviour of zeolite catalyst materials increases our current understanding of many industrially applied processes, such as the methanol-to-hydrocarbon (MTH) reaction. Atom probe tomography (APT) was used to reveal the link between framework and coke elemental distributions in 3D with sub-nanometre resolution. APT revealed 10-20 nanometre-sized Al-rich regions and short-range ordering (within nanometres) between Al atoms.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
The growth of advanced energy technologies for power generation is enabled by the design, development, and integration of structural materials that can withstand extreme environments, such as high temperatures, radiation damage, and corrosion. High-entropy alloys (HEAs) are a class of structural materials in which suitable chemical elements in four or more numbers are mixed to typically produce single-phase concentrated solid solution alloys (CSAs). Many of these alloys exhibit good radiation tolerance like limited void swelling and hardening up to relatively medium radiation doses (tens of displacements per atom (dpa)); however, at higher radiation damage levels (>50 dpa), some HEAs suffer from considerable void swelling limiting their near-term acceptance for advanced nuclear reactor concepts.
View Article and Find Full Text PDFBandgap gradient is a proven approach for improving the open-circuit voltages (Vs) in Cu(In,Ga)Se and Cu(Zn,Sn)Se thin-film solar cells, but has not been realized in Cd(Se,Te) thin-film solar cells, a leading thin-film solar cell technology in the photovoltaic market. Here, we demonstrate the realization of a bandgap gradient in Cd(Se,Te) thin-film solar cells by introducing a Cd(O,S,Se,Te) region with the same crystal structure of the absorber near the front junction. The formation of such a region is enabled by incorporating oxygenated CdS and CdSe layers.
View Article and Find Full Text PDFThe conversion of methanol to valuable hydrocarbon molecules is of great commercial interest, as the process serves as a sustainable alternative for the production of, for instance, the base chemicals for plastics. The reaction is catalyzed by zeolite materials. By the introduction of magnesium as a cationic metal, the properties of the zeolite, and thereby the catalytic performance, are changed.
View Article and Find Full Text PDFThe exceptional mechanical strength of medium/high-entropy alloys has been attributed to hardening in random solid solutions. Here, we evidence non-random chemical mixing in a CrCoNi alloy, resulting from short-range ordering. A data-mining approach of electron nanodiffraction enabled the study, which is assisted by neutron scattering, atom probe tomography, and diffraction simulation using first-principles theory models.
View Article and Find Full Text PDFAdditive manufacturing produces net-shaped components layer by layer for engineering applications. The additive manufacture of metal alloys by laser powder bed fusion (L-PBF) involves large temperature gradients and rapid cooling, which enables microstructural refinement at the nanoscale to achieve high strength. However, high-strength nanostructured alloys produced by laser additive manufacturing often have limited ductility.
View Article and Find Full Text PDFACS Appl Bio Mater
February 2022
We report a potential biomedical material, NbTaTiVZr, and the impact of surface roughness on the osteoblast culture and later behavior based on in vitro tests of preosteoblasts. Cell activities such as adhesion, viability, and typical protein activity on NbTaTiVZr showed comparable results with that of commercially pure Ti (CP-Ti). In addition, NbTaTiVZr with a smooth surface exhibits better cell adhesion, viability, and typical protein activity which shows that surface modification can improve the biocompatibility of NbTaTiVZr.
View Article and Find Full Text PDFRefractory high-entropy alloys (RHEAs) show promising applications at high temperatures. However, achieving high strengths at elevated temperatures above 1173K is still challenging due to heat softening. Using intrinsic material characteristics as the alloy-design principles, a single-phase body-centered-cubic (BCC) CrMoNbV RHEA with high-temperature strengths (beyond 1000 MPa at 1273 K) is designed, superior to other reported RHEAs as well as conventional superalloys.
View Article and Find Full Text PDFSimilar to conventional materials, most multicomponent high-entropy alloys (HEAs) lose ductility as they gain strength. In this study, we controllably introduced gradient nanoscaled dislocation cell structures in a stable single-phase HEA with face-centered cubic structure, thus resulting in enhanced strength without apparent loss of ductility. Upon application of strain, the sample-level structural gradient induces progressive formation of a high density of tiny stacking faults (SFs) and twins, nucleating from abundant low-angle dislocation cells.
View Article and Find Full Text PDFNat Commun
September 2021
Energy efficiency is motivating the search for new high-temperature (high-T) metals. Some new body-centered-cubic (BCC) random multicomponent "high-entropy alloys (HEAs)" based on refractory elements (Cr-Mo-Nb-Ta-V-W-Hf-Ti-Zr) possess exceptional strengths at high temperatures but the physical origins of this outstanding behavior are not known. Here we show, using integrated in-situ neutron-diffraction (ND), high-resolution transmission electron microscopy (HRTEM), and recent theory, that the high strength and strength retention of a NbTaTiV alloy and a high-strength/low-density CrMoNbV alloy are attributable to edge dislocations.
View Article and Find Full Text PDFDeveloping affordable and light high-temperature materials alternative to Ni-base superalloys has significantly increased the efforts in designing advanced ferritic superalloys. However, currently developed ferritic superalloys still exhibit low high-temperature strengths, which limits their usage. Here we use a CALPHAD-based high-throughput computational method to design light, strong, and low-cost high-entropy alloys for elevated-temperature applications.
View Article and Find Full Text PDFSingle-phase high- and medium-entropy alloys with face-centred cubic (fcc) structure can exhibit high tensile ductility and excellent toughness, but their room-temperature strengths are low. Dislocation obstacles such as grain boundaries, twin boundaries, solute atoms and precipitates can increase strength. However, with few exceptions, such obstacles tend to decrease ductility.
View Article and Find Full Text PDFThe longevity of a lithium-ion battery is limited by cathode degradation. Combining atom probe tomography and scanning transmission electron microscopy reveals that the degradation results from atomic-scale irreversible structural changes once lithium leaves the cathode during charging, thereby inhibiting lithium intercalation back into the cathode as the battery discharges. This information unveils possible routes for improving the lifetime of lithium-ion batteries.
View Article and Find Full Text PDFAdv Mater
December 2020
Severe distortion is one of the four core effects in single-phase high-entropy alloys (HEAs) and contributes significantly to the yield strength. However, the connection between the atomic-scale lattice distortion and macro-scale mechanical properties through experimental verification has yet to be fully achieved, owing to two critical challenges: 1) the difficulty in the development of homogeneous single-phase solid-solution HEAs and 2) the ambiguity in describing the lattice distortion and related measurements and calculations. A single-phase body-centered-cubic (BCC) refractory HEA, NbTaTiVZr, using thermodynamic modeling coupled with experimental verifications, is developed.
View Article and Find Full Text PDFObjective: The aim of this study was to determine the heterogeneity in chemical composition of bovine enamel using atom probe tomography, and thereby evaluate the suitability of bovine enamel as a substitute for human enamel in in vitro dental research.
Design: Enamel samples from extracted bovine incisor teeth were first sectioned using a diamond saw and then milled into needle-like samples (<100 nm diameter) by focused ion beam (FIB) coupled with a scanning electron microscope (SEM). These samples were analyzed in the atom probe to acquire three-dimensional (3D) images and quantify the atomic chemistry and distribution in bovine enamel.
Quantifying chemical compositions around nanovoids is a fundamental task for research and development of various materials. Atom probe tomography (APT) and scanning transmission electron microscopy (STEM) are currently the most suitable tools because of their ability to probe materials at the nanoscale. Both techniques have limitations, particularly APT, because of insufficient understanding of void imaging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2020
A new growth method to make highly oriented GaAs thin films on flexible metal substrates has been developed, enabling roll-to-roll manufacturing of flexible semiconductor devices. The grains are oriented in the <001> direction with <1° misorientations between them, and they have a comparable mobility to single-crystalline GaAs at high doping concentrations. At the moment, the role of low-angle grain boundaries (LAGBs) on device performance is unknown.
View Article and Find Full Text PDFCharacterizing materials at nanoscale resolution to provide new insights into structure property performance relationships continues to be a challenging research target due to the inherently low signal from small sample volumes, and is even more difficult for nonconductive materials, such as zeolites. Herein, we present the characterization of a single Cu-exchanged zeolite crystal, namely Cu-SSZ-13, used for NO reduction in automotive emissions, that was subject to a simulated 135,000-mile aging. By correlating Atom Probe Tomography (APT), a single atom microscopy method, and Scanning Transmission X-ray Microscopy (STXM), which produces high spatial resolution X-ray Absorption Near Edge Spectroscopy (XANES) maps, we show that a spatially non-uniform proportion of the Al was removed from the zeolite framework.
View Article and Find Full Text PDF