Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Severe distortion is one of the four core effects in single-phase high-entropy alloys (HEAs) and contributes significantly to the yield strength. However, the connection between the atomic-scale lattice distortion and macro-scale mechanical properties through experimental verification has yet to be fully achieved, owing to two critical challenges: 1) the difficulty in the development of homogeneous single-phase solid-solution HEAs and 2) the ambiguity in describing the lattice distortion and related measurements and calculations. A single-phase body-centered-cubic (BCC) refractory HEA, NbTaTiVZr, using thermodynamic modeling coupled with experimental verifications, is developed. Compared to the previously developed single-phase NbTaTiV HEA, the NbTaTiVZr HEA shows a higher yield strength and comparable plasticity. The increase in yield strength is systematically and quantitatively studied in terms of lattice distortion using a theoretical model, first-principles calculations, synchrotron X-ray/neutron diffraction, atom-probe tomography, and scanning transmission electron microscopy techniques. These results demonstrate that severe lattice distortion is a core factor for developing high strengths in refractory HEAs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202004029DOI Listing

Publication Analysis

Top Keywords

yield strength
16
lattice distortion
16
distortion core
8
hea nbtativzr
8
distortion
5
lattice-distortion-enhanced yield
4
strength
4
strength refractory
4
refractory high-entropy
4
high-entropy alloy
4

Similar Publications

Background: Antenatal care (ANC) is a critical component for improving maternal and newborn health. It provides a platform for essential healthcare services, including health promotion, screening and diagnosis, injury and disease prevention, birth preparedness and preparation for the postnatal period. By implementing timely and appropriate evidence-based practices, ANC can reduce maternal and child morbidity and mortality and optimise overall health and well-being.

View Article and Find Full Text PDF

Artificial nacre based on polydopamine functionalized graphene oxide nanosheets constrained palladium nanocluster with enhanced mechanical properties and catalytical functionalities.

Int J Biol Macromol

September 2025

Research Center of Advanced Catalytic Materials & Functional Molecular Synthesis, Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, School of Chemistry & Chemical Engineering, Shaoxing University, Shaoxing, 312000, China; Institute of Chemistry, Chinese Academy of Scien

Inspired by "the composition of catechol and amine groups in the adhesive proteins" of marine mussel and "brick-and-mortar" structure of nacre, we use polydopamine (PDA) as "mortar", graphene oxides (GO) nanosheets as "brick", and Pd ions as interfacial reinforcer, to fabricate nacre-like Pd enhanced PDA functionalized GO membranes (Pd@PDA/GO) with vacuum filtration-assisted assembly method. Meanwhile, in situ reduced Pd nanoclusters by PDA chains were well constrained within the resultant Pd@PDA/GO artificial nacre composites. Good interfacial adhesion with dense packing of the GO nanosheets was further confirmed with sub-nano level microstructure characterization by positron annihilation lifetime spectroscopy.

View Article and Find Full Text PDF

Influence of drying techniques on the properties of gelatin derived from Atlantic salmon skin.

Int J Biol Macromol

September 2025

Laboratory of Marine Chemical Resource Development, Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido, 041-8611, Japan.

The properties of gelatin derived from fish processing by-products, such as Atlantic salmon (Salmo salar) skin, are strongly influenced by the drying method used during production. This study investigated the impacts of four drying methods on the extraction yield, physicochemical attributes, and gel characteristics of gelatin: freeze-dried gelatin (FDG), spray-dried gelatin (SDG), vacuum-dried gelatin (VDG), and hot air-dried gelatin (HDG) extracted from Atlantic salmon (Salmo salar) skin. The yields of FDG, VDG, and HDG were similar (15.

View Article and Find Full Text PDF

Enhanced detection of RNA modifications in Escherichia coli utilizing direct RNA sequencing.

Cell Rep Methods

September 2025

Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen, Guangdong 518057, China; Tung Biomedical Sciences Centre, City Unive

RNA modifications play crucial roles in prokaryotic cellular processes. In this study, we found that the recent advances in direct RNA sequencing have improved yield, accuracy, and signal-to-noise ratio in bacterial samples. By evaluating four current RNA modification calling models in Escherichia coli transcriptome using native and in vitro transcribed (IVT) RNA, we found the models identified most known rRNA modifications but produced false positives.

View Article and Find Full Text PDF

Finite Element Analysis of Mandibular Distraction Osteogenesis With a New Partially Bioabsorbable Distractor.

J Craniofac Surg

September 2025

Department of Craniomaxillofacial Surgery, Peking Union Medical College, Chinese Academy of Medical Sciences, Plastic Surgery Hospital, Beijing, China.

Objective: We designed a new distractor pairing a bioabsorbable upper fixing plate fixed by bioabsorbable screws with a traditional titanium distractor to simplify the second surgery removing the distractor after mandibular distraction osteogenesis. The present study aims to evaluate its biomechanical properties using finite element method.

Materials And Methods: Ten computer-aided designed models simulating mandibles of 5 patients under 2 working conditions, the instance of distraction and mastication, were produced.

View Article and Find Full Text PDF