A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Detecting Cage Crossing and Filling Clusters of Magnesium and Carbon Atoms in Zeolite SSZ-13 with Atom Probe Tomography. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The conversion of methanol to valuable hydrocarbon molecules is of great commercial interest, as the process serves as a sustainable alternative for the production of, for instance, the base chemicals for plastics. The reaction is catalyzed by zeolite materials. By the introduction of magnesium as a cationic metal, the properties of the zeolite, and thereby the catalytic performance, are changed. With atom probe tomography (APT), nanoscale relations within zeolite materials can be revealed: i.e., crucial information for a fundamental mechanistic understanding. We show that magnesium forms clusters within the cages of zeolite SSZ-13, while the framework elements are homogeneously distributed. These clusters of just a few nanometers were analyzed and visualized in 3-D. Magnesium atoms seem to initially be directed to the aluminum sites, after which they aggregate and fill one or two cages in the zeolite SSZ-13 structure. The presence of magnesium in zeolite SSZ-13 increases the lifetime as well as the propylene selectivity. By using UV-vis spectroscopy and X-ray diffraction techniques, we are able to show that these findings are related to the suppression of aromatic intermediate products, while maintaining the formation of polyaromatic compounds. Further nanoscale analysis of the spent catalysts showed indications of magnesium redistribution after catalysis. Unlike zeolite H-SSZ-13, for which only a homogeneous distribution of carbon was found, carbon can be either homogeneously or heterogeneously distributed within zeolite Mg-SSZ-13 crystals as the magnesium decreases the coking rate. Carbon clusters were isolated, visualized, and analyzed and were assumed to be polyaromatic compounds. Small one-cage-filling polyaromatic compounds were identified; furthermore, large-cage-crossing aromatic molecules were found by isolating large coke clusters, demonstrating the unique coking mechanism in zeolite SSZ-13. Short-length-scale evidence for the formation of polyaromatic compounds at acid sites is discovered, as clear nanoscale relations between aluminum and carbon atoms exist.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9709938PMC
http://dx.doi.org/10.1021/jacsau.2c00296DOI Listing

Publication Analysis

Top Keywords

zeolite ssz-13
20
polyaromatic compounds
16
zeolite
10
carbon atoms
8
atom probe
8
probe tomography
8
zeolite materials
8
nanoscale relations
8
cages zeolite
8
formation polyaromatic
8

Similar Publications