Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

As hydrogen is touted as a key player in the decarbonization of modern society, it is critical to enable quantitative hydrogen (H) analysis at high spatial resolution and, if possible, at the atomic scale. H has a known deleterious impact on the mechanical properties (strength, ductility, toughness) of most materials that can hinder their use as part of the infrastructure of a hydrogen-based economy. Enabling H mapping including local hydrogen concentration analyses at specific microstructural features is essential for understanding the multiple ways that H affect the properties of materials including embrittlement mechanisms and their synergies. In addition, spatial mapping and quantification of hydrogen isotopes is essential to accurately predict tritium inventory of future fusion power plants thus ensuring their safe and efficient operation. Atom probe tomography (APT) has the intrinsic capability to detect H and deuterium (D), and in principle the capacity for performing quantitative mapping of H within a material's microstructure. Yet, the accuracy and precision of H analysis by APT remain affected by complex field evaporation behavior and the influence of residual hydrogen from the ultrahigh vacuum chamber that can obscure the signal of H from within the material. The present article reports a summary of discussions at a focused workshop held at the Max-Planck Institute for Sustainable Materials in April 2024. The workshop was organized to pave the way to establishing best practices in reporting APT data for the analysis of H. We first summarize the key aspects of the intricacies of H analysis by APT and then propose a path for better reporting of the relevant data to support interpretation of APT-based H analysis in materials.

Download full-text PDF

Source
http://dx.doi.org/10.1093/mam/ozae081DOI Listing

Publication Analysis

Top Keywords

establishing best
8
atom probe
8
probe tomography
8
analysis apt
8
analysis
6
hydrogen
6
best practice
4
practice analysis
4
analysis hydrogen
4
hydrogen deuterium
4

Similar Publications

Background: Acupuncture is a widely recognized complementary therapy with proven therapeutic benefits; however, concerns regarding patient safety persist due to adverse events ranging from minor complications to severe outcomes like pneumothorax and nerve injury.

Objective: This study aims to identify common adverse events in acupuncture, propose innovative risk mitigation strategies, establish standardized best practices, enhance practitioner training, and examine global disparities in safety protocols.

Design: Comprehensive review of existing literature, clinical case studies, and international safety guidelines.

View Article and Find Full Text PDF

Follicular dendritic cell sarcoma (FDCS) is a rare tumour derived from dendritic cells located in B-follicles that play a pivotal role in the adaptive immune response. Surgery is the mainstay of treatment for localized disease; however, the management of unresectable or advanced disease is less well-defined. To date, to the best of our knowledge, there is no established or preferred chemotherapeutic regimen, although a number of regimens (primarily used in lymphomas and sarcomas) have been utilized with suboptimal outcomes.

View Article and Find Full Text PDF

Evaluating Tuskegee University's Ongoing Response Strategy to Mitigate Direct and Indirect Impacts of the COVID-19 Pandemic by Using an Integrative Framework Analysis.

J Healthc Sci Humanit

January 2024

Program Manager, Center for Biomedical Research/Research Centers in Minority Institutions (TU CBR/RCMI), Department of Biology, College of Arts and Sciences (CAS), Tuskegee University, Phone: (334) 724-4391, Email:

The emergence of the Novel COVID-19 Pandemic has undoubtedly impacted the lives of individuals across the globe. It has drawn the attention of major public health agencies as they work intensely towards understanding the behavior of the virus causing the disease, while simultaneously establishing ways to curb the spread of the virus among populations. As of the time of writing, 7,949,973 confirmed cases have been reported globally; with the United States (US) contributing to 26.

View Article and Find Full Text PDF

Efforts to reduce the unequal impacts and generations of systemic disadvantage and inequality in healthcare for black and brown communities became amplified and were made more urgent during the COVID-19 pandemic. Moreover, public health surveillance systems have been challenged to address the vulnerabilities that residents within these environments and experiences. This paper describes the methodology used to develop a public health ethics and bioethics surveillance system grounded in empathy and care ethics.

View Article and Find Full Text PDF

A representation of the cause-effect mechanism is needed to enable artificial intelligence to represent how the world works. Bayesian Networks (BNs) have proven to be an effective and versatile tool for this task. BNs require constructing a structure of dependencies among variables and learning the parameters that govern these relationships.

View Article and Find Full Text PDF