Publications by authors named "Jinzhi Du"

Wound healing remains a critical clinical challenge due to inflammatory responses, oxidative stress in the wound microenvironment, and impaired tissue remodeling. In this study, an anisotropic scaffold was developed by integrating photothermal stimulation with topographical cues to modulate wound healing. The scaffold consisted of gelatin methacryloyl (GM) hydrogel and radially aligned poly (ε-caprolactone) (PCL) fibers integrated with polydopamine (PDA).

View Article and Find Full Text PDF

Cancer nanovaccines have emerged as a promising modality for cancer immunotherapy due to their capability of eliciting robust tumor-specific immune responses. However, structural complexity and insufficient spatiotemporal coordination of immune activation pose substantial challenges for optimizing the therapeutic potential of nanovaccines. Herein, a resiquimod-induced nanovaccine (RINV) is devised for personalized cancer immunotherapy.

View Article and Find Full Text PDF

The phagocytosis of macrophages to tumor cells represents an alluring strategy for cancer immunotherapy; however, its effectiveness is largely hindered by the detrimental upregulation of anti-phagocytic signals and insufficient expression of pro-phagocytic signals of tumor cells. Here, a pro-phagocytic polymer-based nanocomplex is designed to promote the macrophage engulfment of tumor cells through concurrent modulation of both the "eat me" and "don't eat me" signals. The nanocomplex MNC is formed by complexing a synthetic PAMAM derivative (G4P-C7A) that is capable of intrinsically inducing the exposure of calreticulin (CALR, a crucial pro-phagocytic protein) and a small inference RNA that can inhibit the expression of CD47 (a primary anti-phagocytic protein).

View Article and Find Full Text PDF

Antigen-presenting cells (APCs), such as macrophages and dendritic cells (DCs) are key players in modulating the immune responses of cytotoxic T lymphocytes (CTLs). Resiquimod (R848), a toll-like receptor (TLR) agonist, has demonstrated the capacity to enhance APC function and reprogram the phenotype of macrophages; however, the unfavorable performance constrains its therapeutic potential. Here, we developed R848-loaded mesoporous silica nanoparticles (denoted as R848@MSN-bi-PEG) with pH-responsive surface polyethylene glycol (PEG) detachment to effectively modulate APCs.

View Article and Find Full Text PDF

Adjuvants can enhance an immunological response, which is an important part of vaccine research. Pickering bubbles have been a mega-hit for biomedical applications, including visualization and targeted drug delivery. However, there have been no studies on Pickering bubbles as an immunological adjuvant, and the special properties and structures of Pickering bubbles may play an important role in immunization.

View Article and Find Full Text PDF

The epidermal growth factor receptor (EGFR) is a validated therapeutic target for RAS/RAF wild-type colorectal cancer (CRC). However, monoclonal antibody-based anti-EGFR therapies such as cetuximab have limited effectiveness. Herein, it is identified that EGFR internalization is associated with poor treatment response and prognosis in patients with CRC, based on a retrospective analysis of patients treated with cetuximab.

View Article and Find Full Text PDF

Remodeling the immunosuppressive tumor microenvironment (TME) by immunomodulators has been well studied in the past years. However, strategies that enable concurrent modulation of both the immunosuppressive TME and tumor-draining lymph nodes (TDLNs) are still in the infancy. Here, we report a pH-sensitive size-switchable nanocluster, SPN-R848, to achieve simultaneous accumulation in tumor and TDLNs for immune activation.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) constitute the largest number of immune cells in the tumor microenvironment (TME). They play an essential role in promoting tumor progression and metastasis, which makes them a potential therapeutic target for cancer treatment. TAMs are usually divided into two categories: pro-tumoral M2-like TAMs and antitumoral M1 phenotypes at either extreme.

View Article and Find Full Text PDF
Article Synopsis
  • Immunogenic cell death (ICD) is effective in enhancing cancer immunotherapy by activating the immune response against tumors.
  • The study identifies a new synthetic compound, G4P-C7A, which induces ICD and promotes the release of immune-activating signals and maturation of dendritic cells.
  • G4P-C7A shows potential in treating tumors by generating reactive oxygen species, inhibiting tumor growth when injected alone, and enhancing effects when combined with existing immunotherapies.
View Article and Find Full Text PDF

Skin wound healing is a complex process that requires appropriate treatment and management. Using a single scaffold to dynamically manipulate angiogenesis, cell migration and proliferation, and tissue reconstruction during skin wound healing is a great challenge. We developed a hybrid scaffold platform that integrates the spatiotemporal delivery of bioactive cues with topographical cues to dynamically manipulate the wound-healing process.

View Article and Find Full Text PDF

Despite cisplatin's pivotal role in clinically proven anticancer drugs, its application has been hampered by severe side effects and a grim prognosis. Herein, we devised a glutathione (GSH)-responsive nanoparticle (PFS-NP) that integrates a disulfide bond-based amphiphilic polyphenol (PP-SS-DA), a dopamine-modified cisplatin prodrug (Pt-OH) and iron ions (Fe) through coordination reactions between Fe and phenols. After entering cells, the responsively released Pt-OH and disulfide bonds eliminate the intracellular GSH, in turn disrupting the redox homeostasis.

View Article and Find Full Text PDF

Tumor-associated macrophages (TAMs) usually adopt a tumor-promoting M2-like phenotype, which largely impedes the immune response and therapeutic efficacy of solid tumors. Repolarizing TAMs from M2 to the antitumor M1 phenotype is crucial for reshaping the tumor immunosuppressive microenvironment (TIME). Herein, we developed self-assembled nanoparticles from the polymeric prodrug of resiquimod (R848) to reprogram the TIME for robust cancer immunotherapy.

View Article and Find Full Text PDF

The ability of drugs to cross the blood-brain barrier (BBB) is crucial for treating central nervous system (CNS) disorders. Inspired by natural viruses, here we report a glucose and polydopamine (GPDA) coating method for the construction of delivery platforms for efficient BBB crossing. Such platforms are composed of nanoparticles (NPs) as the inner core and surface functionalized with glucose-poly(ethylene glycol) (Glu-PEG) and polydopamine (PDA) coating.

View Article and Find Full Text PDF

Targeted delivery of vaccines to the spleen remains a challenge. Inspired by the erythrophagocytotic process in the spleen, we herein report that intravenous administration of senescent erythrocyte-based vaccines profoundly alters their tropism toward splenic antigen-presenting cells (APCs) for imprinting adaptive immune responses. Compared with subcutaneous inoculation, intravenous vaccination significantly upregulated splenic complement expression and demonstrated synergistic antibody killing .

View Article and Find Full Text PDF

Itaconate is a well-known immunomodulatory metabolite; however, its role in hepatocellular carcinoma (HCC) remains unclear. Here, we find that macrophage-derived itaconate promotes HCC by epigenetic induction of Eomesodermin (EOMES)-mediated CD8 T-cell exhaustion. Our results show that the knockout of immune-responsive gene 1 (IRG1), responsible for itaconate production, suppresses HCC progression.

View Article and Find Full Text PDF

Hydrogels are prevailing drug delivery depots to improve antitumor efficacy and reduce systemic toxicity. However, the application of conventional free drug-loaded hydrogel is hindered by poor drug penetration in solid tumors. Here, an injectable ferritin-based nanocomposite hydrogel is constructed to facilitate tumor penetration and improve cancer chemoimmunotherapy.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) show tremendous promise for drug delivery due to their structural and functional versatility. However, MOFs are usually used as biologically inert carriers in most cases. The creation of intrinsically immunostimulatory MOFs remains challenging.

View Article and Find Full Text PDF

Enabling macrophages to phagocytose tumor cells holds great potential for cancer therapy but suffers from tremendous challenges because the tumor cells upregulate antiphagocytosis molecules (such as CD47) on their surface. The blockade of CD47 alone is insufficient to stimulate tumor cell phagocytosis in solid tumors due to the lack of "eat me" signals. Herein, a degradable mesoporous silica nanoparticle (MSN) is reported to simultaneously deliver anti-CD47 antibodies (aCD47) and doxorubicin (DOX) for cancer chemo-immunotherapy.

View Article and Find Full Text PDF

Surgery and drug therapy are the two principal options for cancer treatment. However, their clinical benefits are hindered by the difficulty of accurate location of the tumors and timely monitoring of the treatment efficacy of drugs, respectively. Rapid development of imaging techniques provides promising tools to address these challenges.

View Article and Find Full Text PDF

Cancer vaccines have received tremendous attention in cancer immunotherapy due to their capability to induce a tumor-specific immune response. However, their effectiveness is compromised by the insufficient spatiotemporal delivery of antigens and adjuvants in the subcellular level to induce a robust CD8 T cell response. Herein, a cancer nanovaccine G5-pBA/OVA@Mn is prepared through multiple interactions of manganese ions (Mn), benzoic acid (BA)-modified fifth generation polyamidoamine (G5-PAMAM) dendrimer, and the model protein antigen ovalbumin (OVA).

View Article and Find Full Text PDF

Although immunotherapy of hepatocellular carcinoma using immune checkpoint inhibitors has achieved certain success, only a subset of patients benefits from this therapeutic strategy. The combination of immunostimulatory chemotherapeutics represents a promising strategy to enhance the effectiveness of immunotherapy. However, it is hampered by the poor delivery of conventional chemotherapeutics.

View Article and Find Full Text PDF

The development of chemoresistance is a major hurdle for the treatment of colorectal cancer (CRC), which contributes remarkably to the poor clinical prognosis. Nanodrug delivery systems show great potential in overcoming chemoresistance, but limited by the lack of identification of chemoresistance targets from cancer patients. In the present study, we enrolled chemotherapy-resistant or sensitive CRC patients and used the next-generation RNA sequencing to reveal that Asporin (ASPN) is highly expressed in tumor tissues from oxaliplatin (OXA)-resistant patients and closely correlated with a poor prognosis of CRC.

View Article and Find Full Text PDF

Chemotherapy, although effective against primary tumors, may promote metastasis by causing the release of proinflammatory factors from damaged cells. Here, polymeric nanoparticles that deliver chemotherapeutics and scavenge proinflammatory factors simultaneously to inhibit chemotherapy-induced breast cancer metastasis are developed. The cationic nanoparticles can adsorb cell-free nucleic acids (cfNAs) based on charge-charge interaction, which downregulates the expression of Toll-like receptors and then reduces the secretion of inflammatory cytokines.

View Article and Find Full Text PDF

Recently, the joint estimation for time delay (TD) and direction of arrival (DOA) has suffered from the high complexity of processing multi-dimensional signal models and the ineffectiveness of correlated/coherent signals. In order to improve this situation, a joint estimation method using orthogonal frequency division multiplexing (OFDM) and a uniform planar array composed of reconfigurable intelligent surface (RIS) is proposed. First, the time-domain coding function of the RIS is combined with the multi-carrier characteristic of the OFDM signal to construct the coded channel frequency response in tensor form.

View Article and Find Full Text PDF