BMC Cancer
January 2025
Background: Triple-negative breast cancer (TNBC) is among the most aggressive forms of breast cancer, characterized by a dismal prognosis. In the absence of drug-targetable receptors, chemotherapy remains the sole systemic treatment alternative. Recent advancements in immunotherapy, particularly immune checkpoint inhibitors (ICIs) that target programmed death 1/programmed death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte associated antigen 4 (CTLA-4), have provided renewed optimism for the treatment of patients with TNBC.
View Article and Find Full Text PDFThe corticostriatal connection plays a crucial role in cognitive, emotional, and motor control. However, the specific roles and synaptic transmissions of corticostriatal connection are less studied, especially the corticostriatal transmission from the anterior cingulate cortex (ACC). Here, a direct glutamatergic excitatory synaptic transmission in the corticostriatal projection from the ACC is found.
View Article and Find Full Text PDFJ Cell Mol Med
August 2024
Osteoarthritis (OA) is a widespread inflammatory joint disease with significant global disability burden. Cuproptosis, a newly identified mode of cell death, has emerged as a crucial factor in various pathological conditions, including OA. In this context, our study aims to investigate the intrinsic relationship between cuproptosis-related genes (CRGs) and OA, and assess their potential as biomarkers for OA diagnosis and treatment.
View Article and Find Full Text PDFBackground: We conducted a trial to evaluate the efficacy and safety of nivolumab and paclitaxel as second-line therapy for immune-related biomarker-enriched advanced gastric cancer (AGC).
Methods: This open-label, single-arm, phase Ib/II study was a part of multi-institutional, biomarker-integrated umbrella study conducted in Korea. In phase Ib, patients received nivolumab (3 mg/kg) on Days 1 and 15 and paclitaxel (dose level 1, 70 mg/m or dose level 2, 80 mg/m) on Days 1, 8, 15 every four weeks.
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses.
View Article and Find Full Text PDFJ Clin Oncol
September 2023
Int J Environ Res Public Health
February 2023
The hypoxia pathway not only regulates the organism to adapt to the special environment, such as short-term hypoxia in the plateau under normal physiological conditions, but also plays an important role in the occurrence and development of various diseases such as cancer, cardiovascular diseases, osteoporosis. Bone, as a special organ of the body, is in a relatively low oxygen environment, in which the expression of hypoxia-inducible factor (HIF)-related molecules maintains the necessary conditions for bone development. Osteoporosis disease with iron overload endangers individuals, families and society, and bone homeostasis disorder is linked to some extent with hypoxia pathway abnormality, so it is urgent to clarify the hypoxia pathway in osteoporosis to guide clinical medication efficiently.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
February 2023
PTH 1-34 (teriparatide) is approved by FDA for the treatment of postmenopausal osteoporosis. Iron overload is a major contributing factor for bone loss induced by unloading. Whether iron metabolism is involved in the regulation of PTH 1-34 on unloading-induced osteoporosis has not yet been reported.
View Article and Find Full Text PDFObjective: With the deepening of magnetic biomedical effects and electromagnetic technology, some medical instruments based on static magnetic field (SMF) have been used in orthopedic-related diseases treatment. Studies have shown SMF could combat osteoporosis by regulating the differentiation of mesenchymal stem cells (MSCs), osteoblast and osteoclast. With the development of nanotechnology, iron oxide nanoparticles (IONPs) have been reported to regulate the process of bone anabolism.
View Article and Find Full Text PDFProg Biophys Mol Biol
January 2023
With the widespread use of static magnetic fields (SMFs) in medicine, it is imperative to explore the biological effects of SMFs and the mechanisms underlying their effects on biological systems. The presence of magnetic materials within cells and organisms could affect various biological metabolism and processes, including stress responses, proliferation, and structural alignment. SMFs were generally found to be safe at the organ and organism levels.
View Article and Find Full Text PDFStatic magnetic field (SMF) can alter cell fate decisions in many ways. However, the effects of SMF on cancer stem cells (CSCs) are little-known. In this particular study, we evaluate the biological effect of moderate-intensity SMF on osteosarcoma stem cells (OSCs) and try to clarify the underlying mechanisms of action.
View Article and Find Full Text PDFHeme oxygenase-1 (HO-1) exerts a protective effect against cell damage and induces the activity of many enzymes involved in the treatment of many human diseases, including osteoporosis. The increasing prevalence of osteoporosis and the limitations of the current treatments available led to a continuous occurrence of bone loss and osteoporotic fractures, highlighting the need of a better understanding of the mechanism and function of HO-1. Many factors cause osteoporosis, including lack of estrogen, aging, and iron overload, and they either cause the increase in inflammatory factors or the increase in reactive oxygen species to break bone reconstruction balance.
View Article and Find Full Text PDFIron is an essential element for crucial biological function; whereas excess iron sedimentation impairs the main functions of tissues or organs. Cumulative researches have shown that the disturbances in iron metabolism, especially iron overload is closely concatenating with bone loss. Nevertheless, the specific process of iron overload-induced apoptosis in osteoblasts has not been thoroughly studied.
View Article and Find Full Text PDFBET inhibitor, as an epigenetic regulator inhibitor, reduces the expression of oncogenes such as Myc and Bcl-2, which affects cancer growth and development. However, it has modest activity because of the narrow therapeutic index. Therefore, combination therapy is necessary to increase the anti-tumor effect.
View Article and Find Full Text PDFOsteosarcoma is the most frequently diagnosed primary malignant bone sarcoma in children and adolescents. Recent studies have shown that cancer stem cells (CSCs), a cluster of tumor cells with the ability to self-renew, play an essential role in tumor recurrence and metastasis. Thus, it is necessary to develop therapeutic strategies specifically targeting CSCs.
View Article and Find Full Text PDFIron is one of the important trace elements in life activities. Abnormal iron metabolism increases the incidence of many skeletal diseases, especially for osteoporosis. Iron metabolism plays a key role in the bone homeostasis.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
September 2016
The 14-amino acid (IEGPTLRQWLAARA) thrombopoietin mimetic peptide (TMP) shares no sequence homology with native thrombopoietin (TPO). When dimerized, it displays a high-binding affinity for the TPO receptor and has equipotent bioactivity with recombinant human TPO (rhTPO) in stimulating proliferation and maturation of megakaryocytes in vitro. However, TMP is limited for clinical usage because of its short half-life in vivo.
View Article and Find Full Text PDFBiomed Res Int
December 2015
In order to understand disease pathogenesis, improve medical diagnosis, or discover effective drug targets, it is important to identify significant genes deeply involved in human disease. For this purpose, many earlier approaches attempted to prioritize candidate genes using gene expression profiles or SNP genotype data, but they often suffer from producing many false-positive results. To address this issue, in this paper, we propose a meta-analysis strategy for gene prioritization that employs three different genetic resources--gene expression data, single nucleotide polymorphism (SNP) genotype data, and expression quantitative trait loci (eQTL) data--in an integrative manner.
View Article and Find Full Text PDFA new eremophilane norsesquiterpenoid (1), together with a known eremophilane sesquiterpenoid (2), was isolated from the leaves of Ligularia virgaurea. The structure of 1 was elucidated by a combination of spectroscopic analysis (IR, 1D NMR, 2D NMR, and HR-ESI-MS), and its absolute configuration was determined by a single-crystal X-ray diffraction experiment (with copper radiation). The known compound 2 was identified by comparison of its physical and spectral data with those reported in the literature.
View Article and Find Full Text PDF