Publications by authors named "Jing-Ting Luo"

The uveitis-glaucoma-hyphema (UGH) syndrome, initially described in 1978, presents as an iatrogenic complication associated with contact between intraocular implant and ocular tissue. This syndrome encompasses a spectrum of clinical manifestations, including intraocular inflammation, elevated intraocular pressure, and recurrent hemorrhage. Advances in cataract surgery techniques reduced the incidence of early intraocular lens (IOL) dislocation while inversely increased rates of delayed dislocation.

View Article and Find Full Text PDF

Aim: To explore the relationship between matrix metalloproteinases (MMPs) expression levels in the tumor and the prognosis of uveal melanoma (UM) and to construct prognostic prediction models.

Methods: Transcriptome sequencing data from 17 normal choroid tissues and 53 UM tumor tissues were collected. Based on the differential gene expression levels and their function, MMPs family was selected for establishing risk-score system and prognostic prediction model with machine learning.

View Article and Find Full Text PDF

SbTe-based flexible thin films can be utilized in the fabrication of self-powered wearable devices due to their huge potential in thermoelectric performance. Although doping can significantly enhance the power factor value, the process of identifying suitable dopants is typically accompanied by numerous repeating experiments. Herein, we introduce Zn doping into thermally diffused p-type SbTe flexible thin films with a candidate dopant validated using the first-principles calculations.

View Article and Find Full Text PDF

MXenes have attracted tremendous attention in electromagnetic interference shielding, energy storage, and gas and humidity detections because of their ultralarge surface area and abundant functional groups. However, their poor stability against hydration and oxidation makes them challenging for long-term storage and applications. Herein, we proposed and demonstrated a TiCT MXene composite-based humidity sensor, of which the stability is pronouncedly enhanced by introducing an O adsorption competitor of extracted bentonite (EB).

View Article and Find Full Text PDF

Flexible thermoelectric (TE) generators have received great attention as a sustainable and reliable option to convert heat from the human body and other ambient sources into electricity. This study provides a synthesis route that involves thermally induced diffusion to introduce Te and Se into Bi, fabricating an n-type Bi-Te-Se flexible thin film on a flexible substrate. This specific synthesis alters the crystal orientation (00) of the thin film, improving in-plane electrical transportation and optimizing carrier concentration.

View Article and Find Full Text PDF

AgSe shows significant potential for near-room-temperature thermoelectric applications, but its performance and device design are still evolving. In this work, we design a novel flexible AgSe thin-film-based thermoelectric device with optimized electrode materials and structure, achieving a high output power density of over 65 W m and a normalized power density up to 3.68 μW cm K at a temperature difference of 42 K.

View Article and Find Full Text PDF

Chemotherapy remains an important approach for the treatment of liver metastases from uveal melanoma (UM). Compared with systemic chemotherapy, regional chemotherapy has similar efficacy and fewer systemic adverse effects. Regional chemotherapy for UM liver metastases includes hepatic artery infusion (HAI), transarterial chemoembolization (TACE), and isolated hepatic perfusion (IHP).

View Article and Find Full Text PDF

Sodium ion batteries (SIBs) have attracted increasing attention due to their low cost and abundant reserves of sodium, but their ideal anode materials still need to be explored. MXenes could be candidate electrode materials due to their excellent electrical conductivity and large specific surface area. In this work, the theoretical performance of Ti- and Zr-containing MXenes TiCT (T = O, F, OH) and ZrCT (T = O, F, OH, S) as SIB anode materials is investigated.

View Article and Find Full Text PDF

Currently, various electronic devices make our life more and more safe, healthy, and comfortable, but at the same time, they produce a large amount of nondegradable and nonrecyclable electronic waste that threatens our environment. In this work, we explore an environmentally friendly and flexible mechanical sensor that is biodegradable and recyclable. The sensor consists of a bacterial cellulose (BC) hydrogel as the matrix and imidazolium perchlorate (ImClO) molecular ferroelectric as the functional element, the hybrid of which possesses a high sensitivity of 4 mV kPa and a wide operational range from 0.

View Article and Find Full Text PDF

Despite the fact that antimony triselenide (Sb Se ) thin-film solar cells have undergone rapid development in recent years, the large open-circuit voltage (V ) deficit still remains as the biggest bottleneck, as even the world-record device suffers from a large V deficit of 0.59 V. Here, an effective interface engineering approach is reported where the Sb Se /CdS heterojunction (HTJ) is subjected to a post-annealing treatment using a rapid thermal process.

View Article and Find Full Text PDF

Combining metallic and ceramic properties, and as precursors for MXenes, MAX phases have attracted extensive attention. In recent years, A-element substitution has been demonstrated as an effective scheme to enrich the MAX family. To explore more possible MAX members, the structural, mechanical, and electronic properties and stabilities of 31 TiAC (A = Al, Si, P, S, Fe, Co, Ni, Cu, Zn, Ga, Ge, As, Se, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Os, Ir, Pt, Au, Hg, TI, Pb, Bi, and Po) configurations are investigated in this work.

View Article and Find Full Text PDF

Two-photon absorption spectra are difficult to observe using direct absorption spectroscopy especially in the near-infrared region. Cavity ring-down spectroscopy is a promising absorption spectroscopy technique which has been widely applied to linear and saturated single-photon absorption spectra. In the present study, we report the observation of a possible two-photon absorption in the near-infrared using cavity ring-down spectroscopy, namely a two-photon resonance of methane.

View Article and Find Full Text PDF

Versatile, in situ sensing and continuous monitoring capabilities are critically needed, but challenging, for components made of solid woven carbon fibers in aerospace, electronics, and medical applications. In this work, we proposed a unique concept of integrated sensing technology on woven carbon fibers through integration of thin-film surface acoustic wave (SAW) technology and electromagnetic metamaterials, with capabilities of noninvasive, in situ, and continuous monitoring of environmental parameters and biomolecules wirelessly. First, we fabricated composite materials using a three-layer composite design, in which the woven carbon fiber cloth was first coated with a polyimide (PI) layer followed by a layer of ZnO film.

View Article and Find Full Text PDF

Aim: To investigate the role of microRNA-145 (miRNA-145) and microRNA-205 (miRNA-205) in proliferation and invasion of uveal melanoma (UM) cells.

Methods: The expression level of miRNA-145 and miRNA-205 from samples of UM patients were determined by real-time polymerase chain reaction (RT-PCR). The growth and invasion inhibitory effects were observed by the transfection of UM cells with miRNA-145 and miRNA-205.

View Article and Find Full Text PDF

The ability to actuate liquids remains a fundamental challenge in smart microsystems, such as those for soft robotics, where devices often need to conform to either natural or three-dimensional solid shapes, in various orientations. Here, we propose a hierarchical nanotexturing of piezoelectric films as active microfluidic actuators, exploiting a unique combination of both topographical and chemical properties on flexible surfaces, while also introducing design concepts of shear hydrophobicity and tensile hydrophilicity. In doing so, we create nanostructured surfaces that are, at the same time, both slippery (low in-plane pinning) and sticky (high normal-to-plane liquid adhesion).

View Article and Find Full Text PDF

Integration of microfluidics and biosensing functionalities on a single device holds promise in continuous health monitoring and disease diagnosis for point-of-care applications. However, the required functions of fluid handling and biomolecular sensing usually arise from different actuation mechanisms. In this work, we demonstrate that a single acoustofluidic device, based on a flexible thin film platform, is able to generate hybrid wave modes, which can be used for fluidic actuation (Lamb waves) and biosensing (thickness shear waves).

View Article and Find Full Text PDF

Lead-free double perovskites have been considered as a potential environmentally friendly photovoltaic material for substituting the hybrid lead halide perovskites due to their high stability and nontoxicity. Here, lead-free double perovskite CsAgBiBr films are initially fabricated by single-source evaporation deposition under high vacuum condition. X-ray diffraction and scanning electron microscopy characterization show that the high crystallinity, flat, and pinhole-free double perovskite CsAgBiBr films were obtained after post-annealing at 300 °C for 15 min.

View Article and Find Full Text PDF

Hybrid two-dimensional (2D) halide perovskites has been widely studied due to its potential application for high performance perovskite solar cells. Understanding the relationship between microstructural and opto-electronic properties is very important for fabricating high-performance 2D perovskite solar cell. In this work, the effect of solvent annealing on grain growth was investigated to enhance the efficiency of photovoltaic devices with 2D perovskite films based on (BA)(MA)PbI prepared by single-source thermal evaporation.

View Article and Find Full Text PDF

The performance of organic-inorganic hybrid thermoelectric thin films can be dramatically enhanced by optimizing energy filtering and carrier transport states at the organic-inorganic interfaces. In this work, p-type "Sb2Te3/CH3NH3I/Sb2Te3" multilayer thin films were firstly fabricated with varied contents of CH3NH3I, and then an annealing process was used in order to form homogeneous organic-inorganic hybrid thin films. The results revealed that the introduced organic component can promote thin film growth and develop a dense nanostructure with improved crystallinity, thus resulting in a significantly increased Seebeck coefficient and a reduced thermal conductivity as a result of the optimized electronic transport characteristics and enhanced effects of phonon scattering.

View Article and Find Full Text PDF
Article Synopsis
  • - This study focuses on the growth of Al-doped ZnO (AZO) films on sapphire substrates using a magnetron sputtering system, highlighting how substrate type and deposition temperature influence the films' preferred crystallographic orientations.
  • - Characterization techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), and atomic force microscopy (AFM) revealed that the lattice mismatch between AZO and the substrate is crucial for determining the film's growth and orientation.
  • - The research identifies that thermoelectric properties of AZO films are enhanced by the shape and arrangement of crystal grains, with (112̄0) oriented films showing superior performance, particularly in the [0001] direction, achieving a power factor greater than
View Article and Find Full Text PDF

A multilayer structure of TeO/interdigital transducers (IDTs)/ZnO(112¯0)/Si(100) was proposed and investigated to achieve both high sensitivity and temperature-stability for bio-sensing applications. Dispersions of phase velocities, electromechanical coupling coefficients K, temperature coefficient of delay (TCD) and sensitivity in the multilayer structures were simulated as functions of normalized thicknesses of ZnO (h/λ) and TeO (h/λ) films. The fundamental mode of Love mode (LM) - surface acoustic wave (SAW) shows a larger value of K and higher sensitivity compared with those of the first mode.

View Article and Find Full Text PDF

In this work, an alternative route to fabricating high-quality CH3NH3PbI3 thin films is proposed. Single-source physical vapour deposition (SSPVD) without a post-heat-treating process was used to prepare CH3NH3PbI3 thin films at room temperature. This new process enabled complete surface coverage and moisture stability in a non-vacuum solution.

View Article and Find Full Text PDF