Mol Biol Evol
August 2023
Although the continual expansion of the brain during primate evolution accounts for our enhanced cognitive capabilities, the drivers of brain evolution have scarcely been explored in these ancestral nodes. Here, we performed large-scale comparative genomic, transcriptomic, and epigenomic analyses to investigate the evolutionary alterations acquired by brain genes and provide comprehensive listings of innovatory genetic elements along the evolutionary path from ancestral primates to human. The regulatory sequences associated with brain-expressed genes experienced rapid change, particularly in the ancestor of the Simiiformes.
View Article and Find Full Text PDFUnderstanding the mechanisms underlying phenotypic innovation is a key goal of comparative genomic studies. Here, we investigated the evolutionary landscape of lineage-specific accelerated regions (LinARs) across 49 primate species. Genomic comparison with dense taxa sampling of primate species significantly improved LinAR detection accuracy and revealed many novel human LinARs associated with brain development or disease.
View Article and Find Full Text PDFWith 296 million chronically infected individuals worldwide, hepatitis B virus (HBV) causes a major health burden. The major challenge to cure HBV infection lies in the fact that the source of persistence infection, viral episomal covalently closed circular DNA (cccDNA), could not be targeted. In addition, HBV DNA integration, although normally results in replication-incompetent transcripts, considered as oncogenic.
View Article and Find Full Text PDFTotipotency emerges in early embryogenesis, but its molecular underpinnings remain poorly characterized. In the present study, we employed DNA fiber analysis to investigate how pluripotent stem cells are reprogrammed into totipotent-like 2-cell-like cells (2CLCs). We show that totipotent cells of the early mouse embryo have slow DNA replication fork speed and that 2CLCs recapitulate this feature, suggesting that fork speed underlies the transition to a totipotent-like state.
View Article and Find Full Text PDFIn the mouse, most mature olfactory sensory neurons (OSNs) express one allele of one gene from the repertoire of ~1100 odorant receptor (OR) genes, which encode G-protein coupled receptors (GPCRs). Axons of OSNs that express a given OR coalesce into homogeneous glomeruli, which reside at conserved positions in the olfactory bulb. ORs are intimately involved in ensuring the expression of one OR per OSN and the coalescence of OSN axons into glomeruli.
View Article and Find Full Text PDFStem Cell Reports
October 2017
Extraembryonic endoderm stem (XEN) cell lines can be derived and maintained in vitro and reflect the primitive endoderm lineage. Platelet-derived growth factor receptor alpha (PDGFRA) is thought to be essential for the derivation and maintenance of mouse XEN cell lines. Here, we have re-evaluated this requirement for PDGFRA.
View Article and Find Full Text PDFVarious types of stem cell lines have been derived from preimplantation or postimplantation mouse embryos: embryonic stem cell lines, epiblast stem cell lines, and trophoblast stem cell lines. It is not known if extraembryonic endoderm stem (XEN) cell lines can be derived from postimplantation mouse embryos. Here, we report the derivation of 77 XEN cell lines from 85 postimplantation embryos at embryonic day E5.
View Article and Find Full Text PDFGene targeting in embryonic stem (ES) cells remains best practice for introducing complex mutations into the mouse germline. One aspect in this multistep process that has not been streamlined with regard to the logistics and ethics of mouse breeding is the efficiency of germline transmission: the transmission of the ES cell-derived genome through the germline of chimeras to their offspring. A method whereby male chimeras transmit exclusively the genome of the injected ES cells to their offspring has been developed.
View Article and Find Full Text PDFJ Sci Food Agric
January 2012
Background: Shellfish hypersensitivity is among the most common food allergies. The allergens tropomyosin (TM) and arginine kinase (AK) from mud crab (Scylla paramamosain) were purified to homogeneity. BALB/c female mice were sensitized with TM and AK by intragastric administration.
View Article and Find Full Text PDFThe low success rate of somatic nuclear transfer (NT) is hypothesized to be mainly due to functional defects in the trophoblast cell lineage rather than the inner cell mass (ICM); this hypothesis, however, remains to be tested directly. Here we separated the ICMs from cloned blastocysts and aggregated the cloned ICM with two fertilization-derived (FD) tetraploid (4N) embryos. We found that the full-term development of cloned ICMs was dramatically improved after the trophoblast cells in the cloned blastocysts were replaced by cells from tetraploid embryos, thus providing direct evidence that defects in trophoblast cell lineage underlie the low success rate of somatic NT.
View Article and Find Full Text PDFSelf-renewal and pluripotency are hallmarks of embryonic stem cells (ESCs). However, the signaling pathways that trigger their transition from self-renewal to differentiation remain elusive. Here, we report that calcineurin-NFAT signaling is both necessary and sufficient to switch ESCs from an undifferentiated state to lineage-specific cells and that the inhibition of this pathway can maintain long-term ESC self-renewal independent of leukemia inhibitory factor.
View Article and Find Full Text PDF