The heightened transmissibility and capacity of African swine fever virus (ASFV) induce fatal diseases in domestic pigs and wild boars, posing significant economic repercussions and global threats. Despite extensive research efforts, the development of potent vaccines or treatments for ASFV remains a persistent challenge. Recently, inhibiting the AsfvPolX, a key DNA repair enzyme, emerges as a feasible strategy to disrupt viral replication and control ASFV infections.
View Article and Find Full Text PDFAm J Respir Crit Care Med
September 2023
Background: Myo-inositol (or inositol) and its derivatives not only function as important metabolites for multiple cellular processes but also act as co-factors and second messengers in signaling pathways. Although inositol supplementation has been widely studied in various clinical trials, little is known about its effect on idiopathic pulmonary fibrosis (IPF). Recent studies have demonstrated that IPF lung fibroblasts display arginine dependency due to loss of argininosuccinate synthase 1 (ASS1).
View Article and Find Full Text PDFImmunology
February 2023
Methylthioadenosine phosphorylase (MTAP) deficiency occurs in various malignancies and is associated with poor survival in cancer patients. However, the mechanisms underlying tumour progression due to MTAP loss are yet to be elucidated. Utilizing integrated analyses of the transcriptome, proteome and secretome, we demonstrated that MTAP deficiency alters tumour-intrinsic, immune-related pathways and reprograms cytokine profiles towards a tumour-favourable environment.
View Article and Find Full Text PDFWorld J Clin Cases
April 2021
Background: Co-morbidity of gene turner syndrome (TS) with positive gene and non-classical congenital adrenal hyperplasia (NCAH) is extremely rare and has never been reported to date.
Case Summary: In this article, we present a 14-year-old girl who was referred to our hospital with short stature (weight of 43 kg and height of 143 cm, < -2 SD) with no secondary sexual characteristics (labia minora dysplasia). Laboratory tests indicated hypergonadotropic hypogonadism with significantly increased androstenedione and 17-hydroxyprogesterone (17-OHP) levels.
Theranostics
July 2021
Cigarette smoking is a major risk factor for lung cancer development and progression; however, the mechanism of how cigarette smoke activates signaling pathways in promoting cancer malignancy remains to be established. Herein, we aimed to determine the contribution of a signaling protein, myristoylated alanine-rich C kinase substrate (MARCKS), in smoke-mediated lung cancer. We firstly examined the levels of phosphorylated MARCKS (phospho-MARCKS) in smoke-exposed human lung cancer cells and specimens as well as non-human primate airway epithelium.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
June 2021
Tobacco smoking is a well-known risk factor for both fibrogenesis and fibrotic progression; however, the mechanisms behind these processes remain enigmatic. RTKs (receptor tyrosine kinases) have recently been reported to drive profibrotic phenotypes in fibroblasts during pulmonary fibrosis (PF). Using a phospho-RTK array screen, we identified the RTK AXL as a top upregulated RTK in response to smoke.
View Article and Find Full Text PDFArgininosuccinate synthase 1 (ASS1) serves as a critical enzyme in arginine biosynthesis; however, its role in interstitial lung diseases, particularly idiopathic pulmonary fibrosis (IPF), remains largely unknown. This study aims at characterization and targeting of ASS1 deficiency in pulmonary fibrosis. We find that ASS1 was significantly decreased and inversely correlated with fibrotic status.
View Article and Find Full Text PDFBACKGROUND Emerging evidence suggests the involvement of Reelin in chemoresistance in various cancers. However, its function in cisplatin (DDP) sensitivity of non-small cell lung cancer (NSCLC) needs to be investigated. MATERIAL AND METHODS Reelin expression in cisplatin-sensitive A549 cells and cisplatin-resistant NSCLC (A549/DDP) cells was analyzed by western blot analysis.
View Article and Find Full Text PDFAlthough accumulating evidence has indicated the intimate association between epithelial-mesenchymal transition (EMT) and acquired resistance to chemotherapy for colorectal cancer (CRC), the underlying mechanisms remain elusive. Herein, we reported that Snail, a crucial EMT controller, was upregulated in CRC tissues. Colorectal cancer cells overexpressing Snail were found to be more resistant to 5-fluorouracil (5-Fu).
View Article and Find Full Text PDFFASEB J
December 2019
Targeting activated fibroblasts, including myofibroblast differentiation, has emerged as a key therapeutic strategy in patients with idiopathic pulmonary fibrosis (IPF). However, there is no available therapy capable of selectively eradicating myofibroblasts or limiting their genesis. Through an integrative analysis of the regulator genes that are responsible for the activation of IPF fibroblasts, we noticed the phosphatidylinositol 4,5-bisphosphate (PIP2)-binding protein, myristoylated alanine-rich C-kinase substrate (MARCKS), as a potential target molecule for IPF.
View Article and Find Full Text PDFOxaliplatin (Oxa)‑based chemotherapy is widely used as the first‑line treatment for colorectal cancer (CRC). However, Oxa‑resistance is common for many postoperative CRC patients. To explore drug resistance in CRC, an Oxa‑resistant cell line, HCT116/Oxa, was established from parental HCT116 cells.
View Article and Find Full Text PDFBackground: Oral cancer metastasis is a devastating process that contributes to poor prognosis and high mortality, yet its detailed underlying mechanisms remain unclear. Here, we aimed to evaluate metastasis-specific markers in oral cancer and to provide comprehensive recognition concerning functional roles of the specific target in oral cancer metastasis.
Methods: Lectin, galactoside-binding, soluble, 1 (LGALS1) was identified by secretomic analysis.
Arch Biochem Biophys
June 2018
With the concept of precision medicine, combining multiple molecular-targeting therapies has brought new approaches to current cancer treatments. Malfunction of the tumor suppressor protein, p53 is a universal hallmark in human cancers. Under normal conditions, p53 is degraded through an ubiquitin-proteosome pathway regulated by its negative regulator, MDM2.
View Article and Find Full Text PDFInt J Mol Sci
February 2017
Glaucoma is a group of eye diseases that can cause vision loss and optical nerve damage. To investigate the protein expression alterations in various intraocular tissues (i.e.
View Article and Find Full Text PDFBackground: Clopidogrel low response (CLR) is an independent risk factor of adverse outcomes in patients undergoing percutaneous coronary intervention (PCI), and intensified antiplatelet treatments (IAT) guided by platelet function assays might overcome laboratory CLR. However, whether IAT improves clinical outcomes is controversial.
Methods: Relevant trials were identified in PubMed, the Cochrane Library, and the Chinese Medical Journal Network databases from their establishment to September 9, 2014.
Oncotarget
March 2016
The oral cancer cell line OC3-I5 with a highly invasive ability was selected and derived from an established OSCC line OC3. In this study, we demonstrated that matrix metalloproteinases protein MMP-13 was up-regulated in OC3-I5 than in OC3 cells. We also observed that expression of epithelial-mesenchymal transition (EMT) markers including Twist, p-Src, Snail1, SIP1, JAM-A, and vinculin were increased in OC3-I5 compared to OC3 cells, whereas E-cadherin expression was decreased in the OC3-I5 cells.
View Article and Find Full Text PDFEnviron Mol Mutagen
July 2013
Within ultraviolet radiation, ultraviolet B (UVB) is the most energetic and damaging to humans. At the protein level, UVB irradiation downregulates the expression of antioxidant enzymes leading to the accumulation of reactive oxygen species (ROS). Due to lacking of a global analysis of UVB-modulated corneal proteome, we investigate in vitro the mechanism of UVB-induced corneal damage to determine whether hyaluronic acid (HA) is able to reduce UVB irradiation-induced injury in human corneal epithelial cells.
View Article and Find Full Text PDFHyaluronic acid (HA), a glycosaminoglycan with high molecular weight, has been reported to promote cell proliferation and serves as an important extracellular matrix component. The aim of this study was to in vitro investigate whether HA is able to reduce reactive oxygen species (ROS)-induced heart ischemia-reperfusion injury and activate the cardiomyocyte's damage surveillance systems. Accordingly, rattus cardiomyocyte line, H9C2, was treated with H(2)O(2) as a heart ischemia-reperfusion model followed by incubation with low molecular weight hyaluronan (LMW-HA, 100 kDa) or high molecular weight hyaluronan (HMW-HA, 1000 kDa) and proteomic analysis was performed to investigate the physiologic protection of HA in H(2)O(2)-induced ischemia-reperfusion in cardiomyocyte.
View Article and Find Full Text PDFElectrophoresis
February 2013
Hyaluronic acid (HA) is a high-molecular-weight glycosaminoglycan and extracellular matrix component that promotes cell proliferation. This study aimed to evaluate the effects of HA on alkali-injured human corneal epithelial cells in vitro, and to elucidate the mechanisms by which HA mediates corneal cell protection. A human corneal epithelial cell line (HCE-2) was treated with sodium hydroxide before incubation with low-molecular-weight HA (LMW-HA, 127 kDa) or high-molecular-weight HA (HMW-HA, 1525 kDa).
View Article and Find Full Text PDFIn mammals, sex development is genetically and hormonally regulated. The process starts with the establishment of chromosomal structures (XY or XX), followed by the expression of sex-dependent genes. In order to elucidate the differential protein profiles between male and female amniocytes, a proteomic approach has been performed in this study.
View Article and Find Full Text PDFUVB is the most energetic and DNA-damaging to humans in ultraviolet radiation. Previous research has suggested that exposure to UVB causes skin pathologies because of direct DNA damage and the generation of reactive oxygen species (ROS). However, the detailed molecular mechanisms by which UVB leads to skin cancer have yet to be clarified.
View Article and Find Full Text PDFMol Biosyst
April 2012
Recent progresses in quantitative proteomics have offered opportunities to discover plasma proteins as biomarkers for tracking the progression and for understanding the molecular mechanisms of uterine leiomyomas. In the present study, plasma samples were analyzed by fluorescence two-dimensional differential gel electrophoresis (2D-DIGE) and differentially expressed proteins were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). In total, 20 proteins have been firmly identified representing 13 unique gene products.
View Article and Find Full Text PDFMol Biosyst
November 2011
Currently, the most effective agent against pancreatic cancer is gemcitabine (GEM), which inhibits tumor growth by interfering with DNA replication and blocking DNA synthesis. However, GEM-induced drug resistance in pancreatic cancer compromises the therapeutic efficacy of GEM. To investigate the molecular mechanisms associated with GEM-induced resistance, 2D-DIGE and MALDI-TOF mass spectrometry were performed to compare the proteomic alterations of a panel of differential GEM-resistant PANC-1 cells with GEM-sensitive pancreatic cells.
View Article and Find Full Text PDF