Publications by authors named "Hansen Lin"

Introduction: Immune checkpoint inhibitors (ICIs) have revolutionized the treatment landscape for advanced cancers, yet their efficacy remains heterogeneous among patients. Tumor mutation burden (TMB) has been extensively explored as a potential biomarker for predicting ICI response. However, its application is limited by several factors, including inconsistent predictive power across different tumor types and the lack of a clear relationship with overall survival (OS).

View Article and Find Full Text PDF

The heterogeneity of cancer-associated fibroblasts (CAFs) could affect the response to immune checkpoint inhibitor (ICI) therapy. However, limited studies have investigated the role of inflammatory CAFs (iCAFs) in ICI therapy using pan-cancer single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics sequencing (ST-seq) analysis. We performed pan-cancer scRNA-seq and ST-seq analyses to identify the subtype of GSN iCAFs, exploring its spatial distribution characteristics in the context of ICI therapy.

View Article and Find Full Text PDF

Persulfate-based advanced oxidation processes (PS-AOPs) are widely used to degrade significant amounts of organic pollutants (OPs) in water and soil matrices. The effectiveness of these processes is influenced by the presence of natural organic matter (NOM), which is ubiquitous in the environment. However, the mechanisms by which NOM affects the degradation of OPs in PS-AOPs remain poorly documented.

View Article and Find Full Text PDF
Article Synopsis
  • - Researchers found that a natural compound called (+)-Balasubramide has anti-inflammatory properties but doesn't work well for treating acute lung injury (ALI) due to poor absorption in the body.
  • - A new derivative, called (+)3C-20, was developed and shows significantly better anti-inflammatory effects and absorption, specifically targeting inflammatory responses in both mouse and human immune cells.
  • - The study revealed that (+)3C-20 works by inhibiting mitochondrial VDAC1, which helps stop the activation of inflammatory pathways, suggesting it could be an effective treatment for ALI.
View Article and Find Full Text PDF

The tumour microenvironment (TME) drives bladder cancer (BLCA) progression. Targeting the TME has emerged as a promising strategy for BLCA treatment in recent years. Furthermore, checkpoint blockade therapies are only beneficial for a minority of patients with BLCA, and drug resistance is a barrier to achieving significant clinical effects of anti-programmed cell death protein-1 (PD-1)/programmed death protein ligand-1 (PD-L1) therapy.

View Article and Find Full Text PDF

Background: Clear cell renal cell carcinoma (ccRCC) is a highly invasive and metastatic subtype of kidney malignancy and is correlated with metabolic reprogramming for adaptation to the tumor microenvironment comprising infiltrated immune cells and immunomodulatory molecules. The role of immune cells in the tumor microenvironment (TME) and their association with abnormal fatty acids metabolism in ccRCC remains poorly understood.

Method: RNA-seq and clinical data of KIRC from The Cancer Genome Atlas (TCGA) and E-MTAB-1980 from the ArrayExpress dataset.

View Article and Find Full Text PDF

Background: Triggering receptors expressed by myeloid cells-1 (TREM1) is a receptor belonging to the immunoglobulin superfamily and plays an important role in pro-inflammation in acute and chronic inflammatory disorders. However, the understanding of the immunomodulatory roles of TREM1 in the tumor microenvironment remains incomplete.

Methods: The expression patterns of TREM1 mRNA in tumors and adjacent normal tissues were compared by analyzing data obtained from the Genotype-Tissue Expression and The Cancer Genome Atlas datasets.

View Article and Find Full Text PDF

As a new form of regulated cell death, cuproptosis differs profoundly from apoptosis, ferroptosis, pyroptosis, and necroptosis. The correlation between cuproptosis and long non-coding RNAs (lncRNAs) has been increasingly studied recently. In this study, a novel cuproptosis-related lncRNA prognostic signature was developed to investigate biochemical recurrence (BCR) and tumor immune landscape in prostate cancer (PCa).

View Article and Find Full Text PDF

Introduction: Bladder cancer (BC) is a significant carcinoma of the urinary system that has a high incidence of morbidity and death owing to the challenges in accurately identifying people with early-stage BC and the lack of effective treatment options for those with advanced BC. Thus, there is a need to define new markers of prognosis and prediction.

Methods: In this study, we have performed a comprehensive proteomics experiment by label-free quantitative proteomics to compare the proteome changes in the serum of normal people and bladder cancer patients-the successful quantification of 2064 Quantifiable proteins in total.

View Article and Find Full Text PDF

Pyroptosis and necroptosis are two recently identified forms of immunogenic cell death in the tumor microenvironment (TME), indicating a crucial involvement in tumor metastasis. However, the characteristics of necroptosis and pyroptosis that define tumor microenvironment and prognosis in ccRCC patients remain unknown. We systematically investigated the transcriptional variation and expression patterns of Necroptosis and Pyroptosis related genes (NPRGs).

View Article and Find Full Text PDF

Clear cell renal cell carcinoma (ccRCC) is the most common histological and devastating subtype of renal cell carcinoma. Necroptosis is a form of programmed cell death that causes prominent inflammatory responses. miRNAs play a significant role in cancer progression through necroptosis.

View Article and Find Full Text PDF

We synthesized the optically active epineoclausenamide by utilizing chiral reagents, such as R-α-methylbenzylamine and S-α-methylbenzylamine, for the resolution of the intermediate (trans-3-phenyl-oxiranecarboxylic acid 12), followed by amide exchange, cyclization, and reduction, unlike previously reported methods. The Meerwein-Ponndorf-Verley reduction was used to asymmetrically reduce neoclausenamidone. A plausible reduction mechanism of this method was elucidated.

View Article and Find Full Text PDF

We previously reported the neuroprotective effects of (+)-balasubramide derived compound 3C, but its action on atherosclerosis remains unknown. The study was designed to investigate the potential effects of 3C on atherogenesis and explore the possible underlying mechanisms. 3C ameliorated high-fat diet-induced body weight gain, hyperlipidemia, and atherosclerotic plaque burden in apolipoprotein E-deficient (ApoE) mice after 10 weeks of treatment.

View Article and Find Full Text PDF

The aim of the paper is to describe a new synthesis route to obtain synthetic optically active clausenamidone and neoclausenamidone and then use high-performance liquid chromatography (HPLC) to determine the optical purities of these isomers. In the process, we investigated the different chromatographic conditions so as to provide the best separation method. At the same time, a thermodynamic study and molecular simulations were also carried out to validate the experimental results; a brief probe into the separation mechanism was also performed.

View Article and Find Full Text PDF

Neuroinflammation plays a vital role in the pathological process of cerebral ischemic stroke, but currently there is no effective treatment. After ischemia, microglia-produced proinflammatory mediator expression contributes to the aggravation of neuroinflammation, while anti-inflammatory activation of microglia develops an anti-neuroinflammatory effect via secretion of anti-inflammatory factor. Promoting the anti-inflammatory activation of microglia might be an effective treatment of stroke.

View Article and Find Full Text PDF

The natural product (+)-balasubramide (3j) and its derivatives (3a-3i) were synthesized using a two-step asymmetric synthesis, and the biological activities of 3a-3j were determined in vitro. Methyl (2S,3R)-(+)-3-phenyloxirane-2-carboxylate (1h), the asymmetric synthesis of which was described in a previous paper, was selected as the starting material. Compounds 3a-3j were evaluated for their neuroprotective, antioxidative, and anti-neuroinflammatory effects.

View Article and Find Full Text PDF

Deregulation of the receptor tyrosine kinase c-Met has been implicated in several human cancers and is considered as an attractive target for small molecule drug discovery. In this study, a series of indazoles were designed, synthesized and evaluated as novel c-Met inhibitors. The results showed that the majority of the compounds exhibited significant inhibition on c-Met and compound 4d showed highest activity against c-Met with IC50 value of 0.

View Article and Find Full Text PDF

Highly enantioselective synthesis of α,β-epoxy esters was achieved via one-pot organocatalytic epoxidation and consequent oxidative esterification. Excellent enantioselectivities (up to 99% ee) and good yields were obtained for a variety of α,β-epoxy esters. The method was readily scaled.

View Article and Find Full Text PDF