Publications by authors named "Hai-Peng Cheng"

Cuproptosis, a recently identified form of programmed cell death driven by copper (Cu) ions, has gained attention owing to its involvement in metabolic disorders and degenerative conditions. Pulmonary fibrosis, characterized by abnormal extracellular matrix accumulation and gradual deterioration of lung function, persists as a lethal disorder with few effective treatments. Dysfunctions in Cu metabolism or regulatory pathways lead to an imbalance in pulmonary Cu homeostasis, thereby influencing the onset and progression of lung diseases.

View Article and Find Full Text PDF

Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) can result from various factors, including sepsis, one of the high-risk causes of ALI/ARDS. Recent research emphasizes the role of Glutamate metabolism in ALI/ARDS. Our study found a strong correlation between the difference in serological Glutamate levels of arterial vs venous blood and the progression of lung injury.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic progressive disease of unknown origin and the most common interstitial lung disease. However, therapeutic options for IPF are limited, and novel therapies are urgently needed. Histone deacetylases (HDACs) are enzymes that participate in balancing histone acetylation activity for chromatin remodeling and gene transcription regulation.

View Article and Find Full Text PDF

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and irreversible interstitial lung disease with a prognosis worse than lung cancer. It is a fatal lung disease with largely unknown etiology and pathogenesis, and no effective therapeutic drugs render its treatment largely unsuccessful. With continuous in-depth research efforts, the epigenetic mechanisms in IPF pathogenesis have been further discovered and concerned.

View Article and Find Full Text PDF

Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) has a high mortality rate and incidence of complications. The pathophysiology of ALI/ARDS is still not fully understood. The lipopolysaccharide (LPS)-induced mouse model of ALI has been widely used to study human ALI/ARDS.

View Article and Find Full Text PDF

N-methyl-d-aspartate (NMDA) receptor (NMDAR) activation mediates glutamate (Glu) toxicity and involves bleomycin (BLM)-induced acute lung injury (ALI). We have reported that bone marrow-derived mesenchymal stem cells (BM-MSCs) are NMDAR-regulated target cells, and NMDAR activation inhibits the protective effect of BM-MSCs on BLM-induced pulmonary fibrosis, but its effect on ALI remains unknown. Here, we found that Glu release was significantly elevated in plasma of mice at d 7 after intratracheally injected with BLM.

View Article and Find Full Text PDF

Ferroptosis, a newly discovered type of regulated cell death, has been implicated in numerous human diseases. Idiopathic pulmonary fibrosis (IPF) is a progressive and ultimately fatal interstitial lung disease with poor prognosis and limited treatment options. Emerging evidence has linked ferroptosis and glutamate-determined cell fate which is considered a new light on the etiology of pulmonary fibrosis.

View Article and Find Full Text PDF

Background: A large number of our previous studies showed that endogenous glutamate and N-methyl-D-aspartate receptor (NMDAR) activation may be involved in various types of acute lung injury, airway inflammation, asthma, and pulmonary fibrosis. In animal models, the transplantation of exogenous bone marrow mesenchymal stem cells (BM-MSCs) is the most promising treatment for idiopathic pulmonary fibrosis. However, there are limited reports on the status of endogenous BM-MSCs in the process of bleomycin-induced pulmonary fibrosis in animals.

View Article and Find Full Text PDF

Background: The burden of cardiovascular diseases (CVDs) is increasing substantially due to population growth and aging. Determining effective prevention and understanding the underlying mechanisms remain desirable pursuits for increasing the quality of life. As centenarians and their offspring may have genetic advantages, they may present with healthier cardiovascular-related profiles.

View Article and Find Full Text PDF

Ferroptosis is a newly discovered non-apoptotic form of regulated cell death driven by iron-dependent lipid peroxidation. The present studies have shown that many metabolic processes and homeostasis are affected by ferroptosis. It is related to many lung diseases, including acute lung injury, chronic obstructive pulmonary disease and pulmonary fibrosis, etc.

View Article and Find Full Text PDF

Pulmonary fibrosis is characterized by the remodeling of fibrotic tissue and collagen deposition, which mainly results from aberrant fibroblasts proliferation and trans-differentiation to myofibroblasts. Patients with chronic myelogenous leukemia, myeloproliferative disorder, and scleroderma with pulmonary fibrosis complications show megakaryocyte infiltration in the lung. In this study, we demonstrated that the number of CD41 megakaryocytes increased in bleomycin (BLM)-induced lung fibrosis tissues through the Chemokine (CXCmotif) ligand 12/Chemokine receptor 4 (CXCL12/CXCR4) axis.

View Article and Find Full Text PDF

Aims: Atherosclerosis is the most common cause of cardiovascular disease, such as myocardial infarction and stroke. Previous study revealed that microRNA (miR)-134 promotes lipid accumulation and proinflammatory cytokine secretion through angiopoietin-like 4 (ANGPTL4)/lipid lipoprotein (LPL) signaling in THP-1 macrophages.

Methods: ApoE KO male mice on a C57BL/6 background were fed a high-fat/high-cholesterol Western diet, from 8 to 16 weeks of age.

View Article and Find Full Text PDF

Background: Lipoprotein lipase (LPL) expressed in macrophages plays an important role in promoting the development of atherosclerosis or atherogenesis. MicroRNA-182 (miR-182) is involved in the regulation of lipid metabolism and inflammation. However, it remains unclear how miR-182 regulates LPL and atherogenesis.

View Article and Find Full Text PDF

Charcot-Marie-Tooth disease (CMT), also known as hereditary motor and sensory neuropathy, is the most common inherited peripheral nerve disorder. Missense mutations, such as K141N, in the small heat shock protein HSPB8 are known to cause distal hereditary motor neuropathy 2A (dHMN2A) or Charcot-Marie-Tooth neuropathy type 2L (CMT2L). However, of critical clinical significance, very few specific therapies for this disease exist.

View Article and Find Full Text PDF

It was reported that puerarin decreases the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride (TG) and increases high-density lipoprotein cholesterol (HDL-C) level, but the underlying mechanism is unclear. This study was designed to determine whether puerarin decreased lipid accumulation via up-regulation of ABCA1-mediated cholesterol efflux in THP-1 macrophage-derived foam cells. Our results showed that puerarin significantly promoted the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via the AMP-activated protein kinase (AMPK)-peroxisome proliferator-activated receptor gamma (PPARγ)-liver X receptor-alpha (LXR-α) pathway and decreased cellular lipid accumulation in human THP-1 macrophage-derived foam cells.

View Article and Find Full Text PDF

Atherosclerotic lesions are lipometabolic disorder characterized by chronic progressive inflammation in arterial walls. Previous studies have shown that macrophage-derived lipoprotein lipase (LPL) might be a key factor that promotes atherosclerosis by accelerating lipid accumulation and proinflammatory cytokine secretion. Increasing evidence indicates that microRNA-27 (miR-27) has beneficial effects on lipid metabolism and inflammatory response.

View Article and Find Full Text PDF

Rationale: Previous studies have shown that apolipoprotein-1 (apoA-1) binding protein (AIBP) is highly associated with the regulation of apoA-1 metabolism, suggesting its role in the treatment of atherosclerosis. However, how AIBP regulates foam cell formation remains largely unexplored.

Objective: To investigate the mechanisms underlying AIBP inhibition of foam cell formation from macrophages.

View Article and Find Full Text PDF

This study was designed to evaluate whether CSE/H2S system, which is regulated by miR-216a, regulated ABCA1-mediated cholesterol efflux and cholesterol contents in THP-1 macrophages-derived foam cells. Our qPCR and western blotting results showed that CSE/H2S significantly up-regulated the expression of ATP-binding cassette transporter A1 (ABCA1) mRNA and protein via PI3K/AKT pathway in foam cells derived from human THP-1 macrophages. The miR-216a directly targeted 3' untranslated region of CSE.

View Article and Find Full Text PDF

Rationale: Excessive cholesterol accumulation in macrophages is a major factor of foam cell formation and development of atherosclerosis. Previous studies suggested that miR-486 plays an important role in cardiovascular diseases, but the underlying mechanism is still unknown.

Objective: The purpose of this study is to determine whether miR-486 regulates ATP-binding cassette transporter A1 (ABCA1) mediated cholesterol efflux, and also explore the underlying mechanism.

View Article and Find Full Text PDF

Angiopoietin-like 4 (Angptl4), a secreted protein, is an important regulator to irreversibly inhibit lipoprotein lipase (LPL) activity. Macrophage LPL contributes to foam cell formation via a so-called"molecular bridge" between lipoproteins and receptors on cell surface. It has been reported that macrophage ANGPTL4 suppresses LPL activity, foam cell formation and inflammatory gene expression to reduce atherosclerosis development.

View Article and Find Full Text PDF

Recent studies have suggested that miR-590 may play critical roles in cardiovascular disease. This study was designed to determine the effects of miR-590 on lipoprotein lipase (LPL) expression and development of atherosclerosis in apolipoprotein E knockout (apoE-/-) mice and explore the potential mechanisms. En face analysis of the whole aorta revealed that miR-590 significantly decreased aortic atherosclerotic plaque size and lipid content in apoE-/- mice.

View Article and Find Full Text PDF