The realm includes viruses of archaea, bacteria and eukaryotes, with linear dsDNA genomes. Duplodnavirians share a distinct morphogenetic module of four hallmark genes encoding the HK97-fold major capsid protein, a genome packaging ATPase-nuclease (large terminase subunit), a portal protein and a capsid maturation protease. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the realm , which is available at ictv.
View Article and Find Full Text PDFThis article summarises the activities of the International Committee on Taxonomy of Viruses Bacterial Viruses Subcommittee, detailing developments in the classification of bacterial viruses. We provide here an overview of all new, abolished, moved and renamed taxa proposed in 2024, approved by the Executive Committee, and ratified by membership vote in 2025. Through the collective efforts of 74 international contributors of taxonomy proposals in this round, 43 ratified proposals have led to the creation of one new phylum, one class, four orders, 33 families, 14 subfamilies, 194 genera and 995 species.
View Article and Find Full Text PDFTaxonomic classification of cellular organisms requires the publication of descriptions and proposed names of species and the deposition of specimens. Virus taxonomy is developed through a different system of annual submission of formal taxonomy proposals (TPs) that can be submitted by anyone but are typically prepared by a study group appointed by the International Committee on Taxonomy of Viruses (ICTV) and consisting of experts on a particular group of viruses. These are initially evaluated by an expert subcommittee and by the executive committee (EC) of the ICTV.
View Article and Find Full Text PDFVirus taxonomy, comprising classification and nomenclature, is regulated by the International Committee on Taxonomy of Viruses (ICTV). Taxon names are standardized to facilitate recognition and communication, with defined suffixes for each rank (e.g.
View Article and Find Full Text PDFis a bacterial pathogen found in an increasing number of food categories, potentially reflecting an expanding niche and food safety risk profile. In the UK, sequence type (ST) 121 is more frequently isolated from foods and food environments than from cases of clinical listeriosis, consistent with a relatively low pathogenicity. In this study, we determined the evolution associated with the environmental persistence of a clone by investigating clone-specific genome features in the context of the ST121 population structure from international sources.
View Article and Find Full Text PDFWhole transcriptome amplification (WTA2) and sequence-independent single primer amplification (SISPA) are two widely used methods for combined metagenomic sequencing of RNA and DNA viruses. However, information on the reproducibility and bias of these methods on diverse viruses in faecal samples is currently lacking. A mock community (MC) of diverse viruses was developed and used to spike faecal samples at different concentrations.
View Article and Find Full Text PDFAverage nucleotide identity (ANI) is a widely used metric to estimate genetic relatedness, especially in microbial species delineation. While ANI calculation has been well optimized for bacteria and closely related viral genomes, accurate estimation of ANI below 80%, particularly in large reference data sets, has been challenging due to a lack of accurate and scalable methods. To bridge this gap, we introduce MANIAC, an efficient computational pipeline optimized for estimating ANI and alignment fraction (AF) in viral genomes with divergence around ANI of 70%.
View Article and Find Full Text PDFTaxonomic classification of viruses is essential for understanding their evolution. Genomic classification of viruses at higher taxonomic ranks, such as order or phylum, is typically based on alignment and comparison of amino acid sequence motifs in conserved genes. Classification at lower taxonomic ranks, such as genus or species, is usually based on nucleotide sequence identities between genomic sequences.
View Article and Find Full Text PDFHuman-specific faecal contamination has been affecting surface water and is a threat to both the environment and public health due to its potential co-occurrence with pathogens. Extended studies were conducted to detect and quantify faecal contamination using microbial source tracking (MST) markers targeting bacteria and viruses. The prototypical crAssphage, a presumed Bacteroides-infecting phage discovered in 2014, showed superior specificity to human faeces and high abundance in untreated sewage water.
View Article and Find Full Text PDFOne Health aims to bring together human, animal, and environmental research to achieve optimal health for all. Bacteriophages (phages) are viruses that kill bacteria and their utilisation as biocontrol agents in the environment and as therapeutics for animal and human medicine will aid in the achievement of One Health objectives. Here, we assess the diversity of phages used in One Health in the last 5 years and place them in the context of global phage diversity.
View Article and Find Full Text PDFThe majority of bacteriophage diversity remains uncharacterized, and new intriguing mechanisms of their biology are being continually described. Members of some phage lineages, such as the , repurpose stop codons to encode an amino acid by using alternate genetic codes. Here, we investigated the prevalence of stop codon reassignment in phage genomes and its subsequent impacts on functional annotation.
View Article and Find Full Text PDFHigh-throughput sequencing for uncultivated viruses has accelerated the understanding of global viral diversity and uncovered viral genomes substantially larger than any that have so far been cultured. Notably, the Lak phages are an enigmatic group of viruses that present some of the largest known phage genomes identified in human and animal microbiomes, and are dissimilar to any cultivated viruses. Despite the wealth of viral diversity that exists within sequencing datasets, uncultivated viruses have rarely been used for taxonomic classification.
View Article and Find Full Text PDFThe advent of viral metagenomics, or viromics, has improved our knowledge and understanding of global viral diversity. High-throughput sequencing technologies enable explorations of the ecological roles, contributions to host metabolism, and the influence of viruses in various environments, including the human intestinal microbiome. However, bacterial metagenomic studies frequently have the advantage.
View Article and Find Full Text PDFThe ability of virulent bacteriophages to lyse bacteria influences bacterial evolution, fitness, and population structure. Knowledge of both host susceptibility and resistance factors is crucial for the successful application of bacteriophages as biological control agents in clinical therapy, food processing, and agriculture. In this study, we isolated 12 bacteriophages termed SPLA phage which infect the foodborne pathogen .
View Article and Find Full Text PDFThe majority of bacteriophage diversity remains uncharacterised, and new intriguing mechanisms of their biology are being continually described. Members of some phage lineages, such as the , repurpose stop codons to encode an amino acid by using alternate genetic codes. Here, we investigated the prevalence of stop codon reassignment in phage genomes and subsequent impacts on functional annotation.
View Article and Find Full Text PDFInt J Mol Sci
December 2023
Understanding how the human virome, and which of its constituents, contributes to health or disease states is reliant on obtaining comprehensive virome profiles. By combining DNA viromes from isolated virus-like particles (VLPs) and whole metagenomes from the same faecal sample of a small cohort of healthy individuals and patients with severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we have obtained a more inclusive profile of the human intestinal DNA virome. Key features are the identification of a core virome comprising tailed phages of the class , and a greater diversity of DNA viruses including extracellular phages and integrated prophages.
View Article and Find Full Text PDFWhile taxonomy is an often underappreciated branch of science, it serves very important roles. Bacteriophage taxonomy has evolved from a discipline based mainly on morphology, characterized by the work of David Bradley and Hans-Wolfgang Ackermann, to the sequence-based approach that is taken today. The Bacterial Viruses Subcommittee of the International Committee on Taxonomy of Viruses (ICTV) takes a holistic approach to classifying prokaryote viruses by measuring overall DNA and protein similarity and phylogeny before making decisions about the taxonomic position of a new virus.
View Article and Find Full Text PDFBacteriophages (phages) within the genus are T7-like podoviruses belonging to the subfamily , within the family and have a highly conserved genome organisation. The genomes of these phages range from 37 to 42 kb in size, encode 50-60 genes and are characterised by the presence of direct terminal repeats (DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only and hybrid assemblies.
View Article and Find Full Text PDFThis article reports changes to virus taxonomy and taxon nomenclature that were approved and ratified by the International Committee on Taxonomy of Viruses (ICTV) in April 2023. The entire ICTV membership was invited to vote on 174 taxonomic proposals that had been approved by the ICTV Executive Committee in July 2022, as well as a proposed revision of the ICTV Statutes. All proposals and the revised ICTV Statutes were approved by a majority of the voting membership.
View Article and Find Full Text PDFA universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus.
View Article and Find Full Text PDF