98%
921
2 minutes
20
Taxonomic classification of cellular organisms requires the publication of descriptions and proposed names of species and the deposition of specimens. Virus taxonomy is developed through a different system of annual submission of formal taxonomy proposals (TPs) that can be submitted by anyone but are typically prepared by a study group appointed by the International Committee on Taxonomy of Viruses (ICTV) and consisting of experts on a particular group of viruses. These are initially evaluated by an expert subcommittee and by the executive committee (EC) of the ICTV. EC-approved TPs are then submitted for evaluation and a ratification vote by the wider ICTV membership. Following ratification, the new taxonomy is annually updated in the Master Species List, associated databases and bioinformatic resources. The process is consistent, creates traceability in assignments and supports a fully evaluated, hierarchical classification and nomenclature of all taxonomic ranks from species to realms. The structure also facilitates large-scale and coordinated changes to virus taxonomy, such as the recent introduction of a binomial species nomenclature.TPs are available on the ICTV website after ratification, but they are not indexed in bibliographic databases and are not easily cited. Authors of TPs do not receive citation credit for adopted proposals, and their voluntary contributions are largely invisible in the published literature. For greater visibility of TPs and their authors, the ICTV will commence the annual publication of summaries of all TPs from each ICTV subcommittee. These summaries will provide a searchable compendium of all annual taxonomy changes and additions as well as direct links to the Master Species List and other ICTV bioinformatic resources. Their publication will provide due credit and citations for their authors, form the basis for disseminating taxonomy decisions and promote greater visibility and accessibility to taxonomy changes for the virology community.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/jgv.0.002079 | DOI Listing |
Funct Integr Genomics
September 2025
Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.
In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.
View Article and Find Full Text PDFJ Virol
September 2025
Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA.
Arthropod-borne viruses (arboviruses) pose a major threat to global public health, impacting both human and animal health. Genomic characterization is important for arboviruses because it allows for an understanding of their evolution and improves timely outbreak and epidemic response. In this study, we used high-throughput sequencing and computational analyses to characterize the genomes and evolution of 46 previously unsequenced or partially sequenced arbovirus isolates collected across 23 countries between 1954 and 1984.
View Article and Find Full Text PDFClin Microbiol Rev
September 2025
Institute of Medical Microbiology and Virology, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
SUMMARY spp. are members of the order and are widely found in humans, animals, and the environment. Some species, particularly are highly pathogenic and are among the most frequent causes of urinary tract and bloodstream infections.
View Article and Find Full Text PDFAppl Environ Microbiol
September 2025
Department of Microbiology, Faculty of Science, University of Manitoba, Winnipeg, Manitoba, Canada.
Unlabelled: Although wastewater treatment plants harbor many pathogens, traditional methods that monitor the microbial quality of surface water and wastewater have not changed since the early 1900s and often disregard the presence of other types of significant waterborne pathogens such as viruses. We used metagenomics and quantitative PCR to assess the taxonomy, functional profiling, and seasonal patterns of DNA and RNA viruses, including the virome distribution in aquatic environments receiving wastewater discharges. Environmental water samples were collected at 11 locations in Winnipeg, Manitoba, along the Red and Assiniboine rivers during the Spring, Summer, and Fall 2021.
View Article and Find Full Text PDFInvest Ophthalmol Vis Sci
September 2025
Department of Ophthalmology, Dean McGee Eye Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States.
Purpose: Adeno-associated viruses (AAVs) have become the preferred vector for gene therapy in ophthalmology. However, requirements for specific cell surface receptors limit AAV-mediated retinal cell transduction efficiency. This led to the need to engineer novel AAV vectors for widespread retinal transduction and transgene expression.
View Article and Find Full Text PDF