This article summarises the activities of the International Committee on Taxonomy of Viruses Bacterial Viruses Subcommittee, detailing developments in the classification of bacterial viruses. We provide here an overview of all new, abolished, moved and renamed taxa proposed in 2024, approved by the Executive Committee, and ratified by membership vote in 2025. Through the collective efforts of 74 international contributors of taxonomy proposals in this round, 43 ratified proposals have led to the creation of one new phylum, one class, four orders, 33 families, 14 subfamilies, 194 genera and 995 species.
View Article and Find Full Text PDFThe vertebrate gut microbiome plays crucial roles in host health and disease. However, there is limited information on the microbiomes of wild birds, most of which is restricted to barcode sequences. We therefore explored the use of shotgun metagenomics on the faecal microbiomes of two wild bird species widely used as model organisms in ecological studies: the great tit () and the Eurasian blue tit ().
View Article and Find Full Text PDFWhole transcriptome amplification (WTA2) and sequence-independent single primer amplification (SISPA) are two widely used methods for combined metagenomic sequencing of RNA and DNA viruses. However, information on the reproducibility and bias of these methods on diverse viruses in faecal samples is currently lacking. A mock community (MC) of diverse viruses was developed and used to spike faecal samples at different concentrations.
View Article and Find Full Text PDFMicrobiology (Reading)
February 2025
Nisin O is an antimicrobial peptide encoded by the human gut bacterium A2-162 which has antimicrobial activity against clinically relevant organisms. The nisin O biosynthetic gene cluster (BGC) varies from other nisin BGCs as it lacks a leader-peptide cleaving protease and contains two bacterial two-component response regulator-histidine kinase (RK) systems. The dissemination of the nisin O cluster, the final proteolytic biosynthesis step and the regulation of nisin O are currently unknown and are the foci of this study.
View Article and Find Full Text PDFThe majority of bacteriophage diversity remains uncharacterized, and new intriguing mechanisms of their biology are being continually described. Members of some phage lineages, such as the , repurpose stop codons to encode an amino acid by using alternate genetic codes. Here, we investigated the prevalence of stop codon reassignment in phage genomes and its subsequent impacts on functional annotation.
View Article and Find Full Text PDFHigh-throughput sequencing for uncultivated viruses has accelerated the understanding of global viral diversity and uncovered viral genomes substantially larger than any that have so far been cultured. Notably, the Lak phages are an enigmatic group of viruses that present some of the largest known phage genomes identified in human and animal microbiomes, and are dissimilar to any cultivated viruses. Despite the wealth of viral diversity that exists within sequencing datasets, uncultivated viruses have rarely been used for taxonomic classification.
View Article and Find Full Text PDFThe advent of viral metagenomics, or viromics, has improved our knowledge and understanding of global viral diversity. High-throughput sequencing technologies enable explorations of the ecological roles, contributions to host metabolism, and the influence of viruses in various environments, including the human intestinal microbiome. However, bacterial metagenomic studies frequently have the advantage.
View Article and Find Full Text PDFThe majority of bacteriophage diversity remains uncharacterised, and new intriguing mechanisms of their biology are being continually described. Members of some phage lineages, such as the , repurpose stop codons to encode an amino acid by using alternate genetic codes. Here, we investigated the prevalence of stop codon reassignment in phage genomes and subsequent impacts on functional annotation.
View Article and Find Full Text PDFUnderstanding how the human virome, and which of its constituents, contributes to health or disease states is reliant on obtaining comprehensive virome profiles. By combining DNA viromes from isolated virus-like particles (VLPs) and whole metagenomes from the same faecal sample of a small cohort of healthy individuals and patients with severe myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS), we have obtained a more inclusive profile of the human intestinal DNA virome. Key features are the identification of a core virome comprising tailed phages of the class , and a greater diversity of DNA viruses including extracellular phages and integrated prophages.
View Article and Find Full Text PDFMyalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a multisystemic disease of unknown aetiology that is characterised by disabling chronic fatigue and involves both the immune and gastrointestinal (GI) systems. Patients display alterations in GI microbiome with a significant proportion experiencing GI discomfort and pain and elevated blood biomarkers for altered intestinal permeability compared with healthy individuals. To investigate a possible GI origin of ME/CFS we designed a feasibility study to test the hypothesis that ME/CFS pathogenesis is a consequence of increased intestinal permeability that results in microbial translocation and a breakdown in immune tolerance leading to generation of antibodies reactive to indigenous intestinal microbes.
View Article and Find Full Text PDFAlterations in intestinal mucin glycosylation have been associated with increased intestinal permeability and sensitivity to inflammation and infection. Here, we used mice lacking core 3-derived O-glycans (C3GnT) to investigate the effect of impaired mucin glycosylation in the gut-brain axis. C3GnT mice showed altered microbial metabolites in the caecum associated with brain function such as dimethylglycine and N-acetyl-L-tyrosine profiles as compared to C3GnT littermates.
View Article and Find Full Text PDFMycopathologia
October 2023
Kazachstania pintolopesii is an opportunistic mammalian pathobiont from the K. telluris species complex. No draft genomes of this species are currently available.
View Article and Find Full Text PDFBacteriophages (phages) within the genus are T7-like podoviruses belonging to the subfamily , within the family and have a highly conserved genome organisation. The genomes of these phages range from 37 to 42 kb in size, encode 50-60 genes and are characterised by the presence of direct terminal repeats (DTRs) flanking the linear chromosome. These DTRs are often deleted during short-read-only and hybrid assemblies.
View Article and Find Full Text PDFMicrobiol Resour Announc
March 2023
Candida parapsilosis is a human fungal pathogen of increasing incidence and causes invasive candidiasis, notably in preterm or low-birthweight neonates. Here, we present the genome sequence of C. parapsilosis NCYC 4289, a fecal isolate from a preterm male infant.
View Article and Find Full Text PDFAntibiotics (Basel)
November 2022
Colistin is an antibiotic that has seen increasing clinical use for the treatment of human infections caused by Gram-negative pathogens, particularly due to the emergence of multidrug-resistant pathogens. Colistin resistance is also a growing problem and typically results from alterations to lipopolysaccharides mediated by phosphoethanolamine (pETn) transferase enzymes which can be encoded on the chromosome, or plasmids. In this study, we used 'TraDIS-Xpress' (nsposon irected nsertion site equencing with eion), where a high-density transposon mutant library including outward facing promoters in BW25113 identified genes involved in colistin susceptibility.
View Article and Find Full Text PDFJ Fungi (Basel)
October 2022
The cynomolgus macaque, , is a non-human primate (NHP) widely used in biomedical research as its genetics, immunology and physiology are similar to those of humans. They may also be a useful model of the intestinal microbiome as their prokaryome resembles that of humans. However, beyond the prokaryome relatively little is known about other constituents of the macaque intestinal microbiome including the mycobiome.
View Article and Find Full Text PDFPhages are the most abundant biological entities on the planet, and they play an important role in controlling density, diversity, and network interactions among bacterial communities through predation and gene transfer. To date, a variety of bacteriophage identification tools have been developed that differ in the phage mining strategies used, input files requested, and results produced. However, new users attempting bacteriophage analysis can struggle to select the best methods and interpret the variety of results produced.
View Article and Find Full Text PDFAge-associated changes in the structure of the intestinal microbiome and in its interaction with the brain via the gut-brain axis are increasingly being implicated in neurological and neurodegenerative diseases. Intestinal microbial dysbiosis and translocation of microbes and microbial products including fungal species into the brain have been implicated in the development of dementias such as Alzheimer's disease. Using germ-free mice, we investigated if the fungal gut commensal, , an opportunistic pathogen in humans, can traverse the gastrointestinal barrier and disseminate to brain tissue and whether ageing impacts on the gut mycobiome as a pre-disposing factor in fungal brain infection.
View Article and Find Full Text PDFBackground: Altered intestinal microbiota composition in later life is associated with inflammaging, declining tissue function, and increased susceptibility to age-associated chronic diseases, including neurodegenerative dementias. Here, we tested the hypothesis that manipulating the intestinal microbiota influences the development of major comorbidities associated with aging and, in particular, inflammation affecting the brain and retina.
Methods: Using fecal microbiota transplantation, we exchanged the intestinal microbiota of young (3 months), old (18 months), and aged (24 months) mice.
Motivation: Many genomics applications require the computation of nucleotide coverage of a reference genome or the ability to determine how many reads map to a reference region.
Results: BamToCov is a toolkit for rapid and flexible coverage computation that relies on the most memory efficient algorithm and is designed for integration in pipelines, given its ability to read alignment files from streams. The tools in the suite can process sorted BAM or CRAM files, allowing the user to extract coverage information via different filtering approaches and to save the output in different formats (BED, Wig or counts).
Microb Genom
December 2021
Trimethoprim and sulfamethoxazole are used commonly together as cotrimoxazole for the treatment of urinary tract and other infections. The evolution of resistance to these and other antibacterials threatens therapeutic options for clinicians. We generated and analysed a chemical-biology-whole-genome data set to predict new targets for antibacterial combinations with trimethoprim and sulfamethoxazole.
View Article and Find Full Text PDFGenome Med
November 2021
The human intestinal microbiota is abundant in viruses, comprising mainly bacteriophages, occasionally outnumbering bacteria 10:1 and is termed the virome. Due to their high genetic diversity and the lack of suitable tools and reference databases, the virome remains poorly characterised and is often referred to as "viral dark matter". However, the choice of sequencing platforms, read lengths and library preparation make study design challenging with respect to the virome.
View Article and Find Full Text PDFThe gastrointestinal tract harbors the gut microbiota, structural alterations of which (dysbiosis) are linked with an increase in gut permeability ("leaky gut"), enabling luminal antigens and bacterial products such as nanosized bacterial extracellular vesicles (BEVs) to access the circulatory system. Blood-derived BEVs contain various cargoes and may be useful biomarkers for diagnosis and monitoring of disease status and relapse in conditions such as inflammatory bowel disease (IBD). To progress this concept, we developed a rapid, cost-effective protocol to isolate BEV-associated DNA and used 16S rRNA gene sequencing to identify bacterial origins of the blood microbiome of healthy individuals and patients with Crohn's disease and ulcerative colitis.
View Article and Find Full Text PDF