98%
921
2 minutes
20
A universal taxonomy of viruses is essential for a comprehensive view of the virus world and for communicating the complicated evolutionary relationships among viruses. However, there are major differences in the conceptualisation and approaches to virus classification and nomenclature among virologists, clinicians, agronomists, and other interested parties. Here, we provide recommendations to guide the construction of a coherent and comprehensive virus taxonomy, based on expert scientific consensus. Firstly, assignments of viruses should be congruent with the best attainable reconstruction of their evolutionary histories, i.e., taxa should be monophyletic. This fundamental principle for classification of viruses is currently included in the International Committee on Taxonomy of Viruses (ICTV) code only for the rank of species. Secondly, phenotypic and ecological properties of viruses may inform, but not override, evolutionary relatedness in the placement of ranks. Thirdly, alternative classifications that consider phenotypic attributes, such as being vector-borne (e.g., "arboviruses"), infecting a certain type of host (e.g., "mycoviruses," "bacteriophages") or displaying specific pathogenicity (e.g., "human immunodeficiency viruses"), may serve important clinical and regulatory purposes but often create polyphyletic categories that do not reflect evolutionary relationships. Nevertheless, such classifications ought to be maintained if they serve the needs of specific communities or play a practical clinical or regulatory role. However, they should not be considered or called taxonomies. Finally, while an evolution-based framework enables viruses discovered by metagenomics to be incorporated into the ICTV taxonomy, there are essential requirements for quality control of the sequence data used for these assignments. Combined, these four principles will enable future development and expansion of virus taxonomy as the true evolutionary diversity of viruses becomes apparent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9925010 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3001922 | DOI Listing |
Zoonoses Public Health
September 2025
Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa.
Introduction: Pigeon paramyxovirus type 1 (PPMV-1) is an antigenic variant of Avian Orthoavulavirus 1 (AOAV-1) (Newcastle disease virus) with a global distribution that causes lethal infections in pigeon and dove species. AOAV-1's infecting humans normally cause mild, self-limiting conjunctivitis, but since 2003, PPMV-1 has been associated with an increased number of severe and lethal respiratory and neurological infections in immunocompromised persons in the Netherlands, the USA, France, China and Australia.
Methods: PPMV-1's isolated from free-living pigeons and doves across South Africa from 2012 to 2024 were sequenced using conventional or next generation technologies.
Angew Chem Int Ed Engl
September 2025
College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, P.R. China.
Peptide-based biosensors are widely used for in vitro detection of protease activity but often suffer from the limited sensitivity, poor accuracy, and incompatibility with point-of-care testing (POCT) devices. Herein, we developed a versatile deoxyribozyme (DNAzyme)-amplified protease-sensing (DP) platform that integrates the positively charged oligopeptides with a negatively charged DNAzyme biocatalyst for highly-sensitive protease detection. The system leverages the electrostatic peptide-DNAzyme interactions to inhibit DNAzyme catalytic activity, which is reactivated upon the protease-triggered peptide hydrolysis, thus enabling an efficient signal amplification via the successive cleavage of DNAzyme substrate.
View Article and Find Full Text PDFBMC Health Serv Res
September 2025
Rakai Health Sciences Program, P.O. Box 279, Kalisizo, Uganda.
Background: Hemoglobin estimation (Hb) is the most requested hematology test, especially among pregnant/postnatal women and people living with HIV (PLHIV). In Uganda, several point-of-care (POC) Hb testing devices are currently used and performance may be affected by multiple factors. This study evaluated the diagnostic and analytic performance of four Hb POC devices.
View Article and Find Full Text PDFUnderstanding the transmission routes of high-pathogenicity avian influenza (HPAI) is crucial for developing effective control measures to prevent its spread. In this context, windborne transmission, the idea that the virus could travel through the air over considerable distances, is a contentious concept, and documented cases have been rare. Here, though, we provide genetic evidence supporting the feasibility of windborne transmission.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Microbiology, University of Tennessee, Knoxville, Tennessee, United States of America.
Metatranscriptome sequencing has emerged as a powerful tool for uncovering viral diversity in insects and their associated microbes. To explore viruses linked to the pea aphid (Acyrthosiphon pisum), we performed metatranscriptome sequencing on field-collected samples. In addition to several known plant viruses, we assembled the genome of a new virus homologous to species in the family Mitoviridae, which are positive-sense single-stranded RNA viruses that encode only an RNA-dependent RNA polymerase and typically replicate in mitochondria.
View Article and Find Full Text PDF