Publications by authors named "Dong-Kyun Ko"

Uncooled mid-wave infrared (MWIR) image sensors, which are compact, lightweight, and energy-efficient, are expected to take a dominant position in the future infrared market. As an alternative to traditional epitaxially-grown infrared semiconductors used in high-performance cryo-cooled MWIR imagers, the concept of hybrid sensor materials is gaining attention. Specifically, hybrid structures combining two-dimensional (2D) materials, known for their superior carrier transport properties, with colloidal quantum dots (QDs), which offer excellent optical properties, have shown record-high room-temperature infrared responsivities with spectral responses extending to short-wave infrared (SWIR).

View Article and Find Full Text PDF

A p-type oxide semiconductor can advance oxide electronics by enabling bipolar applications, such as p-n junctions and complementary logic devices. As a single-cation species, p-type SnO (p-SnO) offers processing simplicity, easier manipulation of doping and other properties, and reduced carrier scattering, which is favorable for carrier transport compared to multication or complex p-type oxides. However, the mono-oxide phase, SnO (p-type), is thermodynamically unstable and tends to oxidize further to form the dioxide phase, SnO (n-type).

View Article and Find Full Text PDF

Event-based imaging represents a new paradigm in visual information processing that addresses the speed and energy efficiency shortcomings inherently present in the current complementary metal oxide semiconductor-based machine vision. Realizing such imaging systems has previously been sought using very large-scale integration technologies that have complex circuitries consisting of many photodiodes, differential amplifiers, capacitors, and resistors. Here, we demonstrate that event-driven sensing can be achieved using a simple one-resistor, one-capacitor (1R1C) circuit, where the capacitor is modified with colloidal quantum dots (CQDs) to have a photoresponse.

View Article and Find Full Text PDF
Article Synopsis
  • Tin monosulfide (SnS) is a layered piezoelectric material ideal for wearable, stretchable devices, but needs improved output and manufacturing methods for practical use.
  • This study demonstrates the growth of large-area, centimeter-scale 2D SnS layers using chemical vapor deposition (CVD) at low temperatures (200 °C), compatible with various polymer materials.
  • The research confirms the piezoelectric properties of SnS on polymer substrates and showcases its potential for applications in detecting human motion and generating electricity, particularly through innovative kirigami patterns that enhance strain tolerance.
View Article and Find Full Text PDF

With the emergence of the Internet of Things, wearable electronics, and machine vision, the exponentially growing demands for miniaturization, energy efficiency, and cost-effectiveness have imposed critical requirements on the size, weight, power consumption and cost (SWaP-C) of infrared detectors. To meet this demand, new sensor technologies that can reduce the fabrication cost associated with semiconductor epitaxy and remove the stringent requirement for cryogenic cooling are under active investigation. In the technologically important spectral region of mid-wavelength infrared, intraband colloidal quantum dots are currently at the forefront of this endeavor, with wafer-scale monolithic integration and Auger suppression being the key material capabilities to minimize the sensor's SWaP-C.

View Article and Find Full Text PDF

Various near-atom-thickness two-dimensional (2D) van der Waals (vdW) crystals with unparalleled electromechanical properties have been explored for transformative devices. Currently, the availability of 2D vdW crystals is rather limited in nature as they are only obtained from certain mother crystals with intrinsically possessed layered crystallinity and anisotropic molecular bonding. Recent efforts to transform conventionally non-vdW three-dimensional (3D) crystals into ultrathin 2D-like structures have seen rapid developments to explore device building blocks of unique form factors.

View Article and Find Full Text PDF

The fabrication of oxide-based p-n heterojunctions that exhibit high rectification performance has been difficult to realize using standard manufacturing techniques that feature mild vacuum requirements, low thermal budget processing, and scalability. Critical bottlenecks in the fabrication of these heterojunctions include the narrow processing window of p-type oxides and the charge-blocking performance across the metallurgical junction required for achieving low reverse current and hence high rectification behavior. The overarching goal of the present study is to demonstrate a simple processing route to fabricate oxide-based p-n heterojunctions that demonstrate high on/off rectification behavior, a low saturation current, and a small turn-on voltage.

View Article and Find Full Text PDF

As an emerging member of the colloidal semiconductor quantum dot materials family, intraband quantum dots are being extensively studied for thermal infrared sensing applications. High-performance detectors can be realized using a traditional p-n junction device design; however, the heavily doped nature of intraband quantum dots presents a new challenge in realizing diode devices. In this work, we utilize a trait uniquely available in a colloidal quantum dot material system to overcome this challenge: the ability to blend two different types of quantum dots to control the electrical property of the resulting film.

View Article and Find Full Text PDF

In recent years, there has been increasing interest in leveraging two-dimensional (2D) van der Waals (vdW) crystals for infrared (IR) photodetection, exploiting their unusual optoelectrical properties. Some 2D vdW materials with small band gap energies such as graphene and black phosphorus have been explored as stand-alone IR responsive layers in photodetectors. However, the devices incorporating these IR-sensitive 2D layers often exhibited poor performances owing to their preparation issues such as limited scalability and air instability.

View Article and Find Full Text PDF

Intraband quantum dots are degenerately doped semiconductor nanomaterials that exhibit unique optical properties in mid- to long-wavelength infrared. To date, these quantum dots have been only studied as lateral photoconductive devices, while transitioning toward a vertically stacked structure can open diverse opportunities for investigating advanced device designs. Here, we report the first vertical intraband quantum dot heterojunction devices composed of AgSe/PbS/AgSe quantum dot stacks that bring the advantage of reduced dark conductivity with a simplified device fabrication procedure.

View Article and Find Full Text PDF

Over the past decade, AgSe has attracted increasing attention due to its potentially excellent thermoelectric (TE) performance as an n-type semiconductor. It has been considered a promising alternative to Bi-Te alloys and other commonly used yet toxic and/or expensive TE materials. To optimize the TE performance of AgSe, recent research has focused on fabricating nanosized AgSe.

View Article and Find Full Text PDF

The popularity of colloidal quantum dot (CQD) solar cells has increased owing to their tunable bandgap, multiple exciton generation, and low-cost solution processes. ZnO nanoparticle (NP) layers are generally employed as electron transport layers in CQD solar cells to efficiently extract the electrons. However, trap sites and the unfavorable band structure of the as-synthesized ZnO NPs have hindered their potential performance.

View Article and Find Full Text PDF

Colloidal quantum dots provide a powerful materials platform to engineer optoelectronics devices, opening up new opportunities in the thermal infrared spectral regions where no other solution-processed material options exist. This mini-review collates recent research reports that push the technological envelope of colloidal quantum dot-based photodetectors toward mid- and long-wavelength infrared. We survey the synthesis and characterization of various thermal infrared colloidal quantum dots reported to date, discuss the basic theory of device operation, review the fabrication and measurement of photodetectors, and conclude with the future prospect of this emerging technology.

View Article and Find Full Text PDF

The development of paper-based sensors, antennas, and energy-harvesting devices can transform the way electronic devices are manufactured and used. Herein we describe an approach to fabricate paper thermoelectric generators for the first time by directly impregnating naturally abundant cellulose materials with p- or n-type colloidal semiconductor quantum dots. We investigate Seebeck coefficients and electrical conductivities as a function of temperature between 300 and 400 K as well as in-plane thermal conductivities using Angstrom's method.

View Article and Find Full Text PDF

Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble.

View Article and Find Full Text PDF

Recent advances in quantum dot surface passivation have led to a rapid development of high-efficiency solar cells. Another critical element for achieving efficient power conversion is the charge neutrality of quantum dots, as charge imbalances induce electronic states inside the energy gap. Here we investigate how the simultaneous introduction of metal cations and halide anions modifies the charge balance and enhances the solar cell efficiency.

View Article and Find Full Text PDF

Background: This study sought to determine safe ranges of oblique angle, skin entry point and needle length by reviewing computed tomography (CT) scans and to evaluate the usefulness of a bent tip needle during celiac plexus block (CPB).

Methods: CT scans of 60 CPB patients were reviewed. Image of the uppermost margin of L2 vertebral body was used to measure the minimal and maximal oblique angles and the distances from the midline to skin puncture point.

View Article and Find Full Text PDF

A quantum-dot (QD) p-i-n heterojunction solar cell with an increased depletion region is demonstrated by depleting the QD layer from both the front and back junctions. Due to a combination of improved charged extraction and increased light absorption, a 120% increase in the short-circuit current is achieved compared with that of conventional ZnO/QD devices.

View Article and Find Full Text PDF

Live bee acupuncture (Bong-Chim) dermatitis is an iatrogenic disease induced by so-called live bee acupuncture therapy, which applies the honeybee (Apis cerana) stinger directly into the lesion to treat various diseases in Korea. We present two cases of live bee acupuncture dermatitis and review previously published articles about this disease. We classify this entity into three stages: acute, subacute, and chronic.

View Article and Find Full Text PDF

Background: An epidermoid cyst is a common epithelial-lined cyst. There have been many studies on epidermoid cysts, but few focused on ruptured epidermoid cyst and its histopathologic characteristics.

Objective: We evaluated the histopathologic differences between ruptured and unruptured epidermoid cysts, and their relationships.

View Article and Find Full Text PDF

We report bandlike transport in solution-deposited, CdSe QD thin-films with room temperature field-effect mobilities for electrons of 27 cm(2)/(V s). A concomitant shift and broadening in the QD solid optical absorption compared to that of dispersed samples is consistent with electron delocalization and measured electron mobilities. Annealing indium contacts allows for thermal diffusion and doping of the QD thin-films, shifting the Fermi energy, filling traps, and providing access to the bands.

View Article and Find Full Text PDF
Article Synopsis
  • Pemphigus vulgaris is an autoimmune disease that causes blistering, especially on the scalp, and can lead to tufted hair folliculitis when lesions are persistent.
  • A 51-year-old man presented with scalp lesions lasting around 20 years, showing erosions and groups of hair.
  • Histopathological analysis confirmed the diagnosis of persistent pemphigus vulgaris with features characteristic of tufted hair folliculitis.
View Article and Find Full Text PDF

Directed self-assembly of colloidal nanocrystals into ordered superlattices enables the preparation of novel metamaterials with diverse functionalities. Structural control and precise characterization of these superlattices allow the interactions between individual nanocrystal building blocks and the origin of their collective properties to be understood. Here, we report the directed liquid interfacial assembly of gadolinium trifluoride (GdF(3)) nanoplates into liquid crystalline assemblies displaying long-range orientational and positional order.

View Article and Find Full Text PDF