Colloidal quantum dots for thermal infrared sensing and imaging.

Nano Converg

Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.

Published: March 2019


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Colloidal quantum dots provide a powerful materials platform to engineer optoelectronics devices, opening up new opportunities in the thermal infrared spectral regions where no other solution-processed material options exist. This mini-review collates recent research reports that push the technological envelope of colloidal quantum dot-based photodetectors toward mid- and long-wavelength infrared. We survey the synthesis and characterization of various thermal infrared colloidal quantum dots reported to date, discuss the basic theory of device operation, review the fabrication and measurement of photodetectors, and conclude with the future prospect of this emerging technology.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6399364PMC
http://dx.doi.org/10.1186/s40580-019-0178-1DOI Listing

Publication Analysis

Top Keywords

colloidal quantum
16
quantum dots
12
thermal infrared
12
colloidal
4
dots thermal
4
infrared
4
infrared sensing
4
sensing imaging
4
imaging colloidal
4
dots provide
4

Similar Publications

Superparamagnetic iron oxide nanoparticles - From synthesis to nanomedicine.

Biochem Biophys Res Commun

August 2025

Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA. Electronic address:

Superparamagnetic iron oxide nanoparticles (SPIONs) have emerged as powerful tools in nanomedicine owing to their heavy-metal-free composition, distinct magnetic properties, biocompatibility, and customizable surface chemistry. While traditionally employed as T-weighted MRI contrast agents, recent innovations have enabled the development of ultra-small SPIONs-such as exceedingly small SPIONs (ES-SPIONs) and single-nanometer iron oxide nanoparticles (SNIOs)-that offer T-weighted MRI capabilities, which are favored by radiologists for their superior anatomical clarity. This review highlights the synthesis of monodisperse SPIONs via thermal decomposition and controlled oxidation, as well as their functionalization with zwitterionic dopamine sulfonate (ZDS) ligands, which confer colloidal stability, minimal protein adsorption, and efficient renal clearance.

View Article and Find Full Text PDF

The surfaces of 1D layered lepidocrocite-structured titanates (1DLs) are negatively charged due to an oxygen-to-titanium atomic ratio >2. This, and their layered structure, allow for facile ion exchange and high colloidal stability, demonstrated by ζ-potentials of ≈ -85 mV at their unadjusted pH of ≈10.4.

View Article and Find Full Text PDF

Inverting the Rhodamine Paradigm: Closed-Form Fluorescence with 280 nm Stokes Shift Drives Plastic Circularity.

Angew Chem Int Ed Engl

September 2025

Shaanxi Key Laboratory of New Concept Sensors and Molecular Materials, Key Laboratory of Applied Surface and Colloids Chemistry, Department of Chemistry and Chemical Engineering, ShaanXi Normal University, Xi'an, 710062, P.R. China.

Rhodamine derivatives exhibiting inverted open-closed form fluorescence behavior redefines conventional photochemical paradigms while illuminating new structure-property relationships and fascinating application potentials. Herein, we report a donor-acceptor engineering strategy that activates closed form emission in rhodamines, achieving unprecedented Stokes shifts (>280 nm) while overcoming aggregation-caused quenching. The new class of rhodamines with inverted open-close form emission behavior are created through simultaneous substitution of N,N-diethyl groups with indole (donor) and conversion of spiro-lactam to benzene sulfonamide (acceptor).

View Article and Find Full Text PDF

Immunoelectron microscopy: a comprehensive guide from sample preparation to high-resolution imaging.

Discov Nano

September 2025

Department of Rehabilitation Medicine, Rehabilitation Medical Center, Key Laboratory of Rehabilitation Medicine in Sichuan Province, West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.

Immunoelectron Microscopy (IEM) is a technique that combines specific immunolabeling with high-resolution electron microscopic imaging to achieve precise spatial localization of biomolecules at the subcellular scale (< 10 nm) by using high-electron-density markers such as colloidal gold and quantum dots. As a core tool for analyzing the distribution of proteins, organelle interactions, and localization of disease pathology markers, it has irreplaceable value, especially in synapse research, pathogen-host interaction mechanism, and tumor microenvironment analysis. According to the differences in labeling sequence and sample processing, the IEM technology system can be divided into two categories: the first is pre-embedding labeling, which optimizes the labeling efficiency through the pre-exposure of antigenic epitopes and is especially suitable for the detection of low-abundance and sensitive antigens; the second is post-embedding labeling, which relies on the low-temperature resin embedding (e.

View Article and Find Full Text PDF

Advanced Architectures and Emerging Materials for High-Operating-Temperature Infrared Photodiodes.

Adv Mater

September 2025

College of Integrated Circuits & Micro-Nano Electronics, Fudan University, Shanghai, 200433, China.

High-operating-temperature (HOT) mid-wavelength and long-wavelength infrared photodetectors have emerged as critical enablers for eliminating bulky cryogenic cooling systems, offering transfromative potential in developing compact, energy-efficient infrared technologies with reduced size, weight, power, and cost. Focusing on infrared photodiodes, this review first discusses the fundamental mechanisms limiting performance at elevated operating temperatures. Subsequently, the progress in conventional epitaxial semiconductors, such as HgCdTe, InAsSb, and III-V type-II superlattice is reviewed, highlighting the evolution of device architectures designed to effectively suppress dark currents and approach background-limited performance.

View Article and Find Full Text PDF