Publications by authors named "Daiwei Li"

One-dimensional (1D) hierarchical photocatalyst has the advantages of 1D materials and hierarchical materials, which is a kind of potential high performance photocatalytic materials. However, how to efficiently synthesize 1D hierarchical BiOBr is still a huge challenge. Herein, 1D rod-like BiO(OH)(NO)·3HO, the hydrolysis product of Bi(NO)·5HO, was acted as both the template and Bi source to synthesize 1D hierarchical hollow BiOBr (1DHHBr) through a facile solution stirring method at room temperature, using KBr as Br source.

View Article and Find Full Text PDF

Kidney stone disease is a major public health issue. By breaking stones with repeated laser irradiation, laser lithotripsy (LL) has become the main treatment for kidney stone disease. Laser-induced cavitation is closely associated with stone damage in LL.

View Article and Find Full Text PDF

Recent studies indicate that cavitation may play a vital role in laser lithotripsy. However, the underlying bubble dynamics and associated damage mechanisms are largely unknown. In this study, we use ultra-high-speed shadowgraph imaging, hydrophone measurements, three-dimensional passive cavitation mapping (3D-PCM), and phantom test to investigate the transient dynamics of vapor bubbles induced by a holmium:yttrium aluminum garnet laser and their correlation with solid damage.

View Article and Find Full Text PDF

To investigate the effects of fiber lateral scanning speed across the stone surface () and fiber standoff distance (SD) on dusting efficiency during short pulse holmium (Ho): YAG laser lithotripsy (LL), pre-soaked BegoStone samples were treated in water using 0.2 J/20 Hz at SD of 0.10~0.

View Article and Find Full Text PDF

Thrombosis in the circulation system can lead to major myocardial infarction and cardiovascular deaths. Understanding thrombosis formation is necessary for developing safe and effective treatments. In this work, using digital light processing (DLP)-based 3D printing, we fabricated sophisticatedmodels of blood vessels with internal microchannels that can be used for thrombosis studies.

View Article and Find Full Text PDF

Skin diseases are the most common human diseases and manifest in distinct structural and functional changes to skin tissue components such as basal cells, vasculature, and pigmentation. Although biopsy is the standard practice for skin disease diagnosis, it is not sufficient to provide in vivo status of the skin and highly depends on the timing of diagnosis. Noninvasive imaging technologies that can provide structural and functional tissue information in real time would be invaluable for skin disease diagnosis and treatment evaluation.

View Article and Find Full Text PDF

Photoacoustic microscopy (PAM) is an emerging imaging method combining light and sound. However, limited by the laser's repetition rate, state-of-the-art high-speed PAM technology often sacrifices spatial sampling density (, undersampling) for increased imaging speed over a large field-of-view. Deep learning (DL) methods have recently been used to improve sparsely sampled PAM images; however, these methods often require time-consuming pre-training and large training dataset with ground truth.

View Article and Find Full Text PDF

One primary technical challenge in photoacoustic microscopy (PAM) is the necessary compromise between spatial resolution and imaging speed. In this study, we propose a novel application of deep learning principles to reconstruct undersampled PAM images and transcend the trade-off between spatial resolution and imaging speed. We compared various convolutional neural network (CNN) architectures, and selected a Fully Dense U-net (FD U-net) model that produced the best results.

View Article and Find Full Text PDF

Vancomycin resistance occurs frequently in Enterococcus species, but has not yet been reported in Streptococcus suis, a previously neglected, newly emergent zoonotic pathogen. In this study, we tested the vancomycin susceptibility of 256 human and swine S. suis isolates from 2005 to 2016 and analyzed the mechanism of vancomycin resistance.

View Article and Find Full Text PDF

High-intensity focused ultrasound (HIFU) has demonstrated the capacity to be used for local thermal ablation in clinical surgery; however, relying solely on conventional ultrasound B-mode imaging to monitor HIFU thermal ablation and determine ablation levels remains a challenge. Here, we experimentally demonstrate the ability to use Nakagami imaging to monitor HIFU-induced thermal lesions in porcine livers ex vivo. Ultrasonic Nakagami imaging has been proven to be able to characterize tissues with different scatterer concentrations and distributions.

View Article and Find Full Text PDF

In addition to its vasodilatory effect, ligustrazine (LZ) improves the sensitivity of multidrug resistant cancer cells to chemotherapeutic agents. To enhance the specificity of LZ delivery to tumor cells/tissues, folate‑chitosan nanoparticles (FA‑CS‑NPs) were synthesized by combination of folate ester with the amine group on chitosan to serve as a delivery vehicle for LZ (FA‑CS‑LZ‑NPs). The structure of folate‑chitosan and characteristics of FA‑CS‑LZ‑NPs, including its size, encapsulation efficiency, loading capacity and release rates were analyzed.

View Article and Find Full Text PDF

is a previously neglected, newly emerging multidrug-resistant zoonotic pathogen. Mobile genetic elements (MGEs) play a key role in intra- and interspecies horizontal transfer of antimicrobial resistance (AMR) determinants. Although, previous studies showed the presence of several MGEs, a comprehensive analysis of AMR-associated mobilome as well as their interaction and evolution has not been performed.

View Article and Find Full Text PDF

We previously reported that we had cloned genes responsible for multidrug resistance from the chromosomal DNA of Klebsiella pneumoniae MGH78578 using a drug-hypersusceptible Escherichia coli strain as a host. One of the recombinant plasmids pETV6 conferred resistance to host cells against a wide range of antimicrobial agents, dyes and detergents. It was revealed that this plasmid carried the acrBKp gene and a part of the acrAKp gene coding for a multidrug efflux pump belonging to the RND family.

View Article and Find Full Text PDF

We recently showed that overexpression of REIC/Dickkopf-3 (Dkk-3), a tumor suppressor gene, induced apoptosis in a tumor cell-specific manner. The aim of the present study was to determine the mechanisms underlying the selective induction of apoptosis. At first, we found a mouse renal carcinoma cell line, RENCA, to be extremely sensitive to an adenovirus carrying REIC/Dkk-3 (Ad-REIC), and we showed that activation of c-Jun N-terminal kinase (JNK) was a critical step in cell death, i.

View Article and Find Full Text PDF

Recently, we demonstrated that S100C/A11 comprises an essential pathway for growth suppression by TGFbeta in normal human keratinocytes. Nuclear transfer of S100C/A11 was a hallmark of the activation of the process. In the present study, we examined the possible deterioration in the pathway in human squamous cancer cell lines, focusing on intracellular localization of S100C/A11 and its functional partners Smad3 and Smad4.

View Article and Find Full Text PDF

Klebsiella pneumoniae MGH78578, a clinical isolate, showed high level of resistance to many antimicrobial agents. We cloned genes responsible for drug resistance from chromosomal DNA of K. pneumoniae MGH78578 by shotgun method using Escherichia coli KAM32, a drug hypersensitive strain, as host.

View Article and Find Full Text PDF

The cytotoxicity of non-steroidal anti-inflammatory drugs (NSAIDs) is involved in the formation of NSAID-induced gastric lesions. The mechanism(s) behind these cytotoxic effects, however, is not well understood. We found here that several NSAIDs tested caused hemolysis when employed at concentrations similar to those that result in cytotoxicity.

View Article and Find Full Text PDF