A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Three-Dimensional Super-Resolution Passive Cavitation Mapping in Laser Lithotripsy. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Kidney stone disease is a major public health issue. By breaking stones with repeated laser irradiation, laser lithotripsy (LL) has become the main treatment for kidney stone disease. Laser-induced cavitation is closely associated with stone damage in LL. Monitoring the cavitation activities during LL is thus crucial to optimizing the stone damage and maximizing LL efficiency. In this study, we have developed 3-D super-resolution passive cavitation mapping (3D-SRPCM), in which the cavitation bubble positions can be localized with an accuracy of m, which is 1/10th of the acoustic diffraction limit. Moreover, the 3D-SRPCM reconstruction speed has been improved by 300 times by adopting a GPU-based sparse-matrix beamforming approach. Using 3D-SRPCM, we studied LL-induced cavitation activities on BegoStones, both in free space of water and confined space of a kidney phantom. The dose-dependent analysis provided by 3D-SRPCM revealed that accumulated impact pressure on the stone surface has the highest correlation with the stone damage. By providing high-resolution cavitation mapping during LL treatment, we expect that 3D-SRPCM may become a powerful tool to improve the clinical LL efficiency and patient outcome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12013531PMC
http://dx.doi.org/10.1109/TUFFC.2024.3443781DOI Listing

Publication Analysis

Top Keywords

cavitation mapping
12
stone damage
12
super-resolution passive
8
passive cavitation
8
laser lithotripsy
8
kidney stone
8
stone disease
8
cavitation activities
8
cavitation
7
stone
6

Similar Publications