Publications by authors named "Cunyi Zhao"

Ceramic aerogels (CAs) have emerged as a significant research frontier across various applications due to their lightweight, high porosity, and easily tunable structural characteristics. However, the intrinsic weak interactions among the constituent nanoparticles, coupled with the limited toughness of traditional CAs, make them susceptible to structural collapse or even catastrophic failure when exposed to complex mechanical external forces. Unlike 0D building units, 1D ceramic nanofibers (CNFs) possess a high aspect ratio and exceptional flexibility simultaneously, which are desirable building blocks for elastic CAs.

View Article and Find Full Text PDF

A promising approach to prevent heat- and cold-related illnesses is the integration of zero-energy input control technology into personal thermal management (PTM) systems while reducing energy consumption. However, achieving optimal wearing comfort while maintaining subambient metabolic temperatures using thermally regulating materials without an energy supply remains challenging. In this study, we provide a simple and reliable methodology to produce a phase-changeable metafabric made of thermoplastic polyurethane and phase change capsule (PCC) particles with high moisture permeability and thermal comfort.

View Article and Find Full Text PDF

SiC aerogels with their lightweight nature and exceptional thermal insulation properties have emerged as the most ideal materials for thermal protection in hypersonic vehicles; However, conventional SiC aerogels are prone to brittleness and mechanical degradation when exposed to complex loads such as shock and mechanical vibration. Hence, preserving the structural integrity of aerogels under the combined influence of thermal and mechanical external forces is crucial not only for stabling their thermal insulation performance but also for determining their practicality in harsh environments. This review focuses on the optimization of design based on the structure-performance of SiC aerogels, providing a comprehensive review of the inherent correlations among structural stability, mechanical properties, and insulation performance.

View Article and Find Full Text PDF

SiC is an exceptionally competitive material for porous ceramics owing to its excellent high-temperature mechanical stability. However, SiC porous ceramics suffer from serious structural damage and mechanical degradation under thermal shock due to the hard SiC microstructure and weak bonding networks. Here, we report a scalable interface-engineering protocol to reliably assemble flexible amorphous SiC nanofibers into lamellar cellular meta-aerogels by designing a covalent heterointerface.

View Article and Find Full Text PDF

The emerging infectious diseases have created one of the major practical needs to develop active packaging materials with durable antibacterial and antiviral properties for the food industry. To meet this demand, the development of new technologies applicable to food contact surfaces is highly desired but challenging. The recent discovery of the photoactive properties of vitamin K (VK) derivatives has raised great expectations as promising candidates in functional film development due to the generation of biocidal reactive oxygen species (ROS) by these compounds.

View Article and Find Full Text PDF

In addition to efficacious vaccines and antiviral therapeutics, reliable and flexible in-home personal use diagnostics for the detection of viral antigens are needed for effective control of the COVID-19 pandemic. Despite the approval of several PCR-based and affinity-based in-home COVID-19 testing kits, many of them suffer from problems such as a high false-negative rate, long waiting time, and short storage period. Using the enabling one-bead-one-compound (OBOC) combinatorial technology, several peptidic ligands with a nanomolar binding affinity toward the SARS-CoV-2 spike protein (S-protein) were successfully discovered.

View Article and Find Full Text PDF

Fertiliser has been a vital part of agriculture due to it boosting crop productivity and preventing starvation throughout the world. Despite this huge contribution, the application of nitrogen (N) fertilisers results in N leaching and the formation of greenhouse gases, which threaten the environment and human health. To minimise the impacts, slow/controlled release fertilisers (S/CRFs) have been being developed since the beginning of the 20th century.

View Article and Find Full Text PDF

An ultrasensitive and portable colorimetric enzyme-linked immunosorbent assay (ELISA) sensor for antibiotics was fabricated by immobilizing antibodies inside the largely porous and highly hydrophilic nanofibrous membranes. Different from regular electrospun nanofibrous membranes where antibodies may frequently be blocked by the heterogeneous porous structure and sterically crowded loaded on the surface, the controlled microporous structure and increased hydrophilicity of nanofibrous membranes could improve the diffusion properties of antibodies, reduce the sterically crowding effect, and dramatically improve the sensitivity of the membrane-based ELISA. The limitation of detection (LOD) for chloramphenicol (CAP) reached 0.

View Article and Find Full Text PDF

Porous nanofibrous membranes have ultrahigh specific surface areas and could be broadly employed in protein purification, enzyme immobilization, and biosensors with enhanced selectivity, sensitivity, and efficiency. However, large biomolecules, such as proteins, have hindered diffusion behavior in the micro-porous media, significantly reducing the benefits provided by the nanofibrous membranes. The study of protein diffusion in polyacrylonitrile (PAN) nanofibrous membranes produced under varied humidity and polymer concentration of electrospinning revealed that heterogeneous structures of the nanofibrous membranes possess much smaller effective pore sizes than the measured pore sizes, which significantly affects the diffusion of large molecules through the system though sizes of proteins and pH conditions also have great impacts.

View Article and Find Full Text PDF

Enzyme-linked immunosorbent assays (ELISA), as one of the most used immunoassays, have been conducted ubiquitously in hospitals, research laboratories, etc. However, the conventional ELISA procedure is usually laborious, occupies bulky instruments, consumes lengthy operation time, and relies considerably on the skills of technicians, and such limitations call for innovations to develop a fully automated ELISA platform. In this paper, we have presented a system incorporating a robotic-microfluidic interface (RoMI) and a modular hybrid microfluidic chip that embeds a highly sensitive nanofibrous membrane, referred to as the Robotic ELISA, to achieve human-free sample-to-answer ELISA tests in a fully programmable and automated manner.

View Article and Find Full Text PDF

Endothelial cell (EC) transplantation via injectable collagen hydrogel has received much attention as a potential treatment for various vascular diseases. However, the therapeutic effect of transplanted ECs is limited by their poor viability, which partially occurs as a result of cellular apoptosis triggered by the insufficient cell-extracellular matrix (ECM) engagement. Integrin binding to the ECM is crucial for cell anchorage to the surrounding matrix, cell spreading and migration, and further activation of intracellular signaling pathways.

View Article and Find Full Text PDF

Enzyme-linked immunoassay (ELISA) is highly specific and selective towards target molecules and is convenient for on-site detection. However, in many cases, lack of high sensitivity makes it hard to reveal a significant colorimetric signal for detecting a trace amount of target molecules. Thus, analytical instruments are required for detection, which limits the application of ELISA for on-site detection.

View Article and Find Full Text PDF

In recent years, fluorescent carbon dots have attracted great attention due to their good luminescence and low toxicity. Here, blue fluorescent core-shell structured carbon polymer dots (CPDs) with high stability under a wide range of pH values, long storage time and excellent fluorescence in various solvents and even in solid state were prepared by hydrothermal synthesis of dendritic tris(2-aminoethyl)amine (TAEA) and citric acid. The CPDs core structure provides strong fluorescent luminescence, a shell structure of the core possesses high amount of dendritic primary amino groups connected by ethylene groups to the core.

View Article and Find Full Text PDF

Real-life wearable electronics with long-term stable sensing performance are of significant practical interest to public. Wearable pressure sensors with washable, comfortable, breathable, and stable sensing ability are a key requirement to meet the desire. However, effects of ubiquitous ambient moisture and intrinsic defects of current capacitive sensing materials are two factors leading to unstable sensing performance of current pressure sensors.

View Article and Find Full Text PDF

An ultrasensitive label-free amperometric immunosensor for the detection of chloramphenicol (CAP) residues in milk has been developed by using a screen-printed carbon electrode laminated with a layer of poly (vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membrane that is covalently immobilized with a CAP antibody (anti-CAP). The performance of the PVA-co-PE nanofiber membrane (PVA-co-PE NFM) on the electrode was compared with a PVA-co-PE casted membrane (PVA-co-PE CM), necessary fabrication steps and performance of the sensors were investigated by electrochemical impedance spectroscopy (EIS). The application of the PVA-co-PE NFM decreased the electron-transfer-resistance by about 4 times compared with a conventional PVA-co-PE casted membrane.

View Article and Find Full Text PDF

Poly (vinyl alcohol-co-ethylene) nanofibrous membranes (PVA-co-PE NFM) were successfully modified by sodium-3-sulfobenzoate to become negatively charged with sulfonate groups, and the sulfonated (PVA-co-PE) nanofiber membrane SS (PVA-co-PE NFM) was used in non-covalent adsorption of cellulases via electrostatic attraction. The modified NFM showed excellent adsorption to the enzyme molecules due to the incorporated static charge interaction with the fibers, high open-porosity and ultrahigh surface areas of the nanofibers. Such unique morphology and chemical structures lead to the adsorption capacity of 130 mg g and reusability for 5 cycles without significant change in catalytic functions.

View Article and Find Full Text PDF

Fabricating adsorptive materials for fast and high efficient adsorption of enzymes is critical to match the great demands for separation and recovery of enzymes used as biocatalysts. However, it has proven extremely challenging. Here, we report a cost-effective strategy to construct the sulfated group surface-functionalized silk fibroin nanofibrous membranes (SS-SFNM) under mild conditions for positively charged Candida rugosa lipase adsorption.

View Article and Find Full Text PDF

1,2,3,4-Butanetetracarboxylic acid (BTCA) can efficiently esterify cellulose with pyrophosphoric acid (PPA) as a catalyst to remove protons of reaction intermediates. However, valence and relative concentration ratio (RCR) of catalyst anions correlating to pH of finishing bath played a critical role in the reactions. Results here indicated that wrinkle recovery angle, tensile strength retention and ester absorbance of fabrics treated at pH of 2.

View Article and Find Full Text PDF

Enzyme-immobilized nanoparticles that are both catalysis effective and recyclable would have wide applications ranging from bioengineering and food industry to environmental fields; however, creating such materials has proven extremely challenging. Herein, we present a scalable methodology to create Candida rugosa lipase-immobilized magnetic nanoparticles (L-MNPs) by the combination of nonionic reverse micelle method and FeO nanoparticles. Our approach causes the naturally abundant and sustainable Candida rugose lipase to ordered-assemble into nanoparticles with high catalytic activity and durability.

View Article and Find Full Text PDF

In this study, polyanionic alginate gel beads crosslinked by Ca and glutaraldehyde have demonstrated a strong electrostatic interaction with specific proteins. Due to the naturally abundant carboxyl groups, the prepared alginate gel beads exhibited a relatively superior integrated adsorption performance toward lysozyme, including a superior adsorption capacity of 213mgg, fast adsorption equilibrium within 12h, good selectivity, and good reversibility. Compared with other protein adsorbents, the as-prepared adsorptive beads have the advantages of excellent adsorption performance, easy to prepare, convenient, efficient, reliable and environment-friendly to apply, which can serve as a more sustainable material in protein separation and purification.

View Article and Find Full Text PDF

There is a critical need for new efficient solutions to purify and disinfect water from source to point-of-use, especially for the water contaminated by pathogenic microbes. Traditional disinfection technologies are chemically intensive and limited, either by biofouling or by the irreversible consumption of disinfectants. Herein, we present a scalable methodology to create biocidal and rechargeable nanofibrous membranes (BNF membranes) by combining -halamine antimicrobial agent with electrospun nanofibers.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have developed a new type of antimicrobial film, called HAF films, combining strong mechanical properties with the ability to be recharged for repeated use.
  • The films are made using a unique method that integrates N-halamine compounds, which are effective against bacteria, into poly(vinyl alcohol-co-ethylene) materials.
  • These films demonstrate impressive antibacterial effects, showing significant reductions in harmful bacteria like Escherichia coli, and have potential applications in medical, bioengineering, and food industries.
View Article and Find Full Text PDF

1,2,3,4-Butanetetracarboxylic acid (BTCA) imparts good anti-wrinkle property to cotton fabrics and results in significant strength loss due to cross-linking and acid degradation of cellulose simultaneously. However, benzophenone-3,3',4,4'- tetracarboxylic acid (BPTCA), an aromatic acid, crosslinks cellulose effectively but causes less strength loss to the products under similar conditions. The difference in damages to cellulose fibers was analyzed by using diffusibility and corresponding affinity of the acids to cellulose fibers, which were estimated by their molecular sizes and Hansen solubility parameters (HSP).

View Article and Find Full Text PDF