Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In addition to efficacious vaccines and antiviral therapeutics, reliable and flexible in-home personal use diagnostics for the detection of viral antigens are needed for effective control of the COVID-19 pandemic. Despite the approval of several PCR-based and affinity-based in-home COVID-19 testing kits, many of them suffer from problems such as a high false-negative rate, long waiting time, and short storage period. Using the enabling one-bead-one-compound (OBOC) combinatorial technology, several peptidic ligands with a nanomolar binding affinity toward the SARS-CoV-2 spike protein (S-protein) were successfully discovered. Taking advantage of the high surface area of porous nanofibers, immobilization of these ligands on nanofibrous membranes allows the development of personal use sensors that can achieve low nanomolar sensitivity in the detection of the S-protein in saliva. This simple biosensor employing naked-eye reading exhibits detection sensitivity comparable to some of the current FDA-approved home detection kits. Furthermore, the ligand used in the biosensor was found to detect the S-protein derived from both the original strain and the Delta variant. The workflow reported here may enable us to rapidly respond to the development of home-based biosensors against future viral outbreaks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10255569PMC
http://dx.doi.org/10.1021/acssensors.2c02386DOI Listing

Publication Analysis

Top Keywords

peptidic ligands
8
sars-cov-2 spike
8
spike protein
8
discovery peptidic
4
ligands sars-cov-2
4
protein development
4
development highly
4
highly sensitive
4
sensitive personal
4
personal colorimetric
4

Similar Publications

Purpose: To evaluate the efficacy and underlying mechanism of advanced optimal pulse technology intense pulsed light (AOPT) in low-energy triple-pulse long-width mode (AOPT-LTL) for melasma treatment.

Methods: An in vivo guinea pig model of melasma was established through progesterone injection and ultraviolet B radiation. Three sessions of AOPT-LTL treatment were performed weekly.

View Article and Find Full Text PDF

Increased Cholesterol Interactions in the Active Conformational State of the Glucagon-Like Peptide-1 Receptor.

Biophys J

September 2025

CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune 411 008, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India. Electronic address:

The glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that plays an important role in metabolic regulation, and consequently is a target for type 2 diabetes and obesity therapeutics. Although cholesterol has been reported to be implicated in receptor activation, its interactions with the receptor during the activation cycle have not been probed. Using coarse-grained molecular dynamics simulations, we have characterized the cholesterol interactions with GLP-1R in four conformational states: the inactive, partially active, GLP-1-bound active, and exenatide-bound active conformational states.

View Article and Find Full Text PDF

Low density lipoprotein receptor-related protein 2 (LRP2) is a 600 kilodalton multi-ligand endocytic membrane receptor expressed in several cell types during fetal development, including neuroepithelial cells, and in select absorptive epithelial cells in the adult. In epithelial cancers, LRP2 expression is associated with a differentiated tumor cell state and better prognosis. In previous work, we found that while LRP2 is not expressed in benign naevi, it is frequently acquired in melanoma.

View Article and Find Full Text PDF

Blood purification using immunoadsorbent columns is a therapeutic strategy for removing pathogenic autoantibodies in autoimmune diseases. Currently available columns have limitations: Trp/Phe columns offer cost-effectiveness and sterilizability, but lack antigen specificity and have limited capacity to remove diverse pathogenic autoantibodies; whereas Protein A/peptide/anti-human IgG columns target all antibodies, regardless of pathogenicity, limiting specificity, and often require sterile production due to low stability under sterilization conditions, except for peptide ligands. Full-length autoantigen-immobilized immunoadsorbent columns have great potential to specifically adsorb targeted autoantibodies, because autoantibodies recognize diverse epitopes that vary among individuals.

View Article and Find Full Text PDF

Chitosan polyplexes for targeted gene delivery: From mechanisms to clinical applications.

Carbohydr Polym

November 2025

Department of Pharmaceutics, Parul Institute of Pharmacy, Faculty of Pharmacy, Parul University, Waghodia, Vadodara, 391760, Gujarat, India; Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India; Faculty of Pharmacy, Silpakorn Univers

As a diverse natural polymer called Chitosan, it created ground-breaking advancements in nucleic acid therapeutic delivery techniques for handling essential DNA and RNA delivery hurdles. The article investigates how nucleic acids form stable polyplexes with chitosan through electrostatic bonds, as well as explores their chemical and biological properties. The review explores how molecular weight, combined with the degree of deacetylation, combined with advanced functionalization strategies, help enhance delivery results.

View Article and Find Full Text PDF