Publications by authors named "Chengpeng He"

Mitochondrial DNA (mtDNA) editing can generate cellular and animal models of mitochondrial genetic disorders and holds promise for future ex vivo and in vivo therapeutic applications. However, due to the quantitative nature of mitochondrion genetics, as more base-editing tools evolve, it is crucial to evaluate not only their efficiency and specificity on the sequence level but also the resulting molecular phenotypes. Here, we devised a novel Omics Carrier microcapsule, abbreviated as OmicsCam, that achieves homogeneous reactions within a heterogeneous carrier membrane, enabling highly efficient multistep biochemistry workflows.

View Article and Find Full Text PDF

This study examines the biocompatibility, osteogenic potential, and effectiveness of polyether ether ketone (PEEK) composites for treating osteonecrosis, seeking to establish a theoretical basis for clinical application. A range of PEEK composite materials, including sulfonated polyether ether ketone (SPEEK), polydopamine-sulfonated polyether ether ketone (SPEEK-PDA), bone-forming peptide-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-BFP), and vascular endothelial growth factor-poly-dopamine-sulfonated polyether ether ketone (SPEEK-PDA-VEGF), were constructed by concentrated sulfuric acid sulfonation, polydopamine modification and grafting of bioactive factors. The experiments involved adult male New Zealand rabbits aged 24-28 weeks and weighing 2.

View Article and Find Full Text PDF

Maintaining a reliable electricity supply amidst the integration of diverse energy sources necessitates optimizing the stability of power systems. This paper introduces a groundbreaking method to enhance the efficiency and resilience of power grids. The increasing dependence on renewable energy sources poses significant challenges to traditional power networks, thereby demanding innovative solutions to uphold their stability and security.

View Article and Find Full Text PDF

Practices related to mitochondrial research have long been hindered by the presence of mitochondrial pseudogenes within the nuclear genome (NUMTs). Even though partially assembled human reference genomes like hg38 have included NUMTs compilation, the exhaustive NUMTs within the only complete reference genome (T2T-CHR13) remain unknown. Here, we comprehensively identified the fixed NUMTs within the reference genome using human pan-mitogenome (HPMT) from GeneBank.

View Article and Find Full Text PDF

Pleural mesothelioma (PM) with pericardial involvement is extremely rare. We now report a rare case of malignant PM with constrictive pericarditis as the first presentation. A 59-year-old male diagnosed with constrictive pericarditis underwent pericardiectomy and pericardial pathology revealed mesothelial hyperplasia.

View Article and Find Full Text PDF
Article Synopsis
  • Heterochromatin is crucial for maintaining the stability of genomes in eukaryotes, but how it forms during meiosis is not well understood.
  • A study reveals that the POL2A subunit of DNA polymerase epsilon is necessary for the correct formation of meiotic heterochromatin, specifically through its interactions with MORC1 and histone proteins.
  • The findings suggest that POL2A's two distinct domains are involved in organizing meiotic heterochromatin, indicating that its functions extend beyond just DNA replication and may be similar across different species like animals and plants.
View Article and Find Full Text PDF

Industrial waste gas emissions from fossil fuel over-exploitation have aroused great attention in modern society. Recently, metal-organic frameworks (MOFs) have been developed in the capture and catalytic conversion of industrial exhaust gases such as SO , H S, NO , CO , CO, etc. Based on these resourceful conversion applications, in this review, we summarize the crucial role of the surface, interface, and structure optimization of MOFs for performance enhancement.

View Article and Find Full Text PDF

The majority of cancer patients are among aged population, suggesting an urgent need to advance our knowledge on complicated relationship between aging and cancer. It has been hypothesized that metabolic changes during aging could act as a driver for tumorigenesis. Given the fact that mitochondrial DNA (mtDNA) mutations are common in both tumors and aged tissues, it is interesting to contemplate possible role of age-related mtDNA mutations in tumorigenesis.

View Article and Find Full Text PDF

Histone methylation and demethylation play important roles in plant growth and development, but the involvement of histone demethylation during meiosis is poorly understood. Here we show that disruption of Arabidopsis thaliana INCREASE IN BONSAI METHYLATION 1 (IBM1) causes incomplete synapsis, chromosome entanglement and reduction of recombination during meiosis, leading to sterility. Interestingly, these ibm1 meiotic defects are rescued by mutations in either SUVH4/KYP or CMT3.

View Article and Find Full Text PDF

Meiosis is a fundamental process for sexual reproduction in most eukaryotes and the evolutionarily conserved recombinases RADiation sensitive51 (RAD51) and Disrupted Meiotic cDNA1 (DMC1) are essential for meiosis and thus fertility. The mitotic function of RAD51 is clear, but the meiotic function of RAD51 remains largely unknown. Here we show that RAD51 functions as an interacting protein to restrain the Structural Maintenance of Chromosomes5/6 (SMC5/6) complex from inhibiting DMC1.

View Article and Find Full Text PDF

Cohesin, a multisubunit protein complex, is required for holding sister chromatids together during mitosis and meiosis. The recruitment of cohesin by the sister chromatid cohesion 2/4 (SCC2/4) complex has been extensively studied in Saccharomyces cerevisiae mitosis, but its role in mitosis and meiosis remains poorly understood in multicellular organisms, because complete loss-of-function of either gene causes embryonic lethality. Here, we identified a weak allele of Atscc2 (Atscc2-5) that has only minor defects in vegetative development but exhibits a significant reduction in fertility.

View Article and Find Full Text PDF

TiCT, a novel two-dimensional layer material, is widely used as electrode materials of supercapacitor due to its good metal conductivity, redox reaction active surface, and so on. However, there are many challenges to be addressed which impede TiCT obtaining the ideal specific capacitance, such as restacking, re-crushing, and oxidation of titanium. Recently, many advances have been proposed to enhance capacitance performance of TiCT.

View Article and Find Full Text PDF