Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The majority of cancer patients are among aged population, suggesting an urgent need to advance our knowledge on complicated relationship between aging and cancer. It has been hypothesized that metabolic changes during aging could act as a driver for tumorigenesis. Given the fact that mitochondrial DNA (mtDNA) mutations are common in both tumors and aged tissues, it is interesting to contemplate possible role of age-related mtDNA mutations in tumorigenesis. MtDNA encodes genes essential for mitochondrial metabolism, and mtDNA mutates at a much higher rate than nuclear genome. Random drifting of somatic mtDNA mutations, as a result of cell division or mitochondrial turnover during aging, may lead to more and more cells harboring high-frequency pathogenic mtDNA mutations, albeit at different loci, in single-cells. Such mutations can induce metabolic reprogramming, nuclear genome instability and immune response, which might increase the likelihood of tumorigenesis. In this review, we summarize current understanding of how mtDNA mutations accumulate with aging and how these mutations could mechanistically contribute to tumor origin. We also discuss potential prevention strategies for mtDNA mutation-induced tumorigenesis, and future works needed in this direction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749795PMC
http://dx.doi.org/10.1093/lifemedi/lnac014DOI Listing

Publication Analysis

Top Keywords

mtdna mutations
20
mitochondrial dna
8
mutations
8
tumor origin
8
mtdna
8
nuclear genome
8
aging-associated accumulation
4
mitochondrial
4
accumulation mitochondrial
4
dna mutations
4

Similar Publications

Complete mitochondrial DNA sequence analysis in patients with major depressive disorder.

J Affect Disord

September 2025

Department of Psychiatry, The Affiliated Kangning Hospital of Ningbo University, Ningbo Kangning Hospital, Ningbo, China; Medical Center, Ningbo University, Ningbo, China. Electronic address:

Objective: This study aimed to identify potential mutations associated with major depressive disorder (MDD) and evaluate disease-associated risk factors.

Methods: Total genomic DNAwas extracted from the participants' blood samples, and the complete mitochondrial genome wasamplified by PCR, purified, and sequenced. Mutation burden analysis and functional mutation analysis was performed, including total mutation counts, highly conserved mutations (Conservation Index >75 %), and structurally disruptive mutations.

View Article and Find Full Text PDF

Replication competition drives the selective mtDNA inheritance in Drosophila ovary.

Cell Rep

September 2025

National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA. Electronic address:

Purifying selection that limits the transmission of harmful mitochondrial DNA (mtDNA) mutations has been observed in both human and animal models. Yet, the precise mechanism underlying this process remains undefined. Here, we present a highly specific and efficient in situ imaging method capable of visualizing mtDNA variants that differ by only a few nucleotides at single-molecule resolution in Drosophila ovaries.

View Article and Find Full Text PDF

Somatically acquired mitochondrial DNA mutations accumulate with age, but the mechanisms and consequences are poorly understood. Here we show that transient injuries induce a burst of persistent mtDNA mutations that impair resilience to future injuries. mtDNA mutations suppressed energy-intensive nucleotide metabolism.

View Article and Find Full Text PDF

Myeloproliferative neoplasms (MPNs) are clonal disorders of hematopoietic stem cells characterized by aberrant proliferation of myeloid lineages, driven primarily by mutations in JAK2, CALR, and myeloproliferative leukemia, leading to constitutive activation of the JAK-STAT pathway. Emerging evidence highlights mitochondrial dysfunction as a key factor in MPN pathogenesis, contributing to increased reactive oxygen species production, mitochondrial DNA mutations, and dysregulated mitochondrial dynamics, which collectively promote clonal expansion and apoptosis resistance. Targeting mitochondrial pathways has gained attention as a therapeutic strategy, with approaches including mitochondria-targeted antioxidants, metabolic inhibitors, and modulation of mitophagy and mitochondrial fission/fusion dynamics.

View Article and Find Full Text PDF