Publications by authors named "Carmelo Di Primo"

Background: Once integrated in the genome of infected cells, HIV-1 provirus is transcribed by the cellular transcription machinery. This process is regulated by both viral and cellular factors, which are necessary for an efficient viral replication as well as for the setting up of viral latency, leading to a repressed transcription of the integrated provirus.

Results: In this study, we examined the role of two parameters in HIV-1 LTR promoter activity.

View Article and Find Full Text PDF

Surface plasmon resonance (SPR)-based biosensors are widely used instruments for characterizing molecular interactions. In theory the SPR signal depends only on mass changes for interacting molecules of same chemical nature. Whether conformational changes of interacting molecules also contribute to the SPR signal is still a subject of lively debates.

View Article and Find Full Text PDF

In this study, we designed aptamer-based self-assemblies for the delivery of quinine. Two different architectures were designed by hybridizing quinine binding aptamers and aptamers targeting lactate dehydrogenase (PfLDH): nanotrains and nanoflowers. Nanotrains consisted in controlled assembly of quinine binding aptamers through base-pairing linkers.

View Article and Find Full Text PDF

This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy).

View Article and Find Full Text PDF

This work identifies new ligands of the nucleoprotein N of SARS-CoV-2 by in silico screening, which used a new model of N, built from an Alphafold model refined by molecular dynamic simulations. The ligands were neuropeptides, such as substance P (1-7) and enkephalin, bound at a large site of the C-terminal or associated with the N-terminal β-sheet. The BA4 and BA5 Omicron variants of N also exhibited a large site as in wt N, and an increased flexibility of the BA5 variant, enabling substance P binding.

View Article and Find Full Text PDF

CD95 is a death receptor that can promote oncogenesis through molecular mechanisms that are not fully elucidated. Although the mature CD95 membrane receptor is considered to start with the arginine at position 17 after elimination of the signal peptide, this receptor can also be cleaved by MMP7 upstream of its leucine at position 37. This post-translational modification occurs in cancer cells but also in normal cells such as peripheral blood leukocytes.

View Article and Find Full Text PDF

Trypanosoma brucei belongs to a genus of protists that cause life-threatening and economically important diseases of human and animal populations in Sub-Saharan Africa. T. brucei cells are covered in surface glycoproteins, some of which are used to escape the host immune system.

View Article and Find Full Text PDF

The role of juxtaposition of activating and inhibitory receptors in signal inhibition of cytotoxic lymphocytes remains strongly debated. The challenge lies in the lack of tools that allow simultaneous spatial manipulation of signaling molecules. To circumvent this, we produced a nanoengineered multifunctional platform with molecular-scale spatial control of ligands, which was applied to elucidate KIR2DL1-mediated inhibition of NKG2D signaling-receptors of natural killer cells.

View Article and Find Full Text PDF

Impaired wound healing and ulcer complications are a leading cause of death in diabetic patients. In this study, we report the design and synthesis of a cyclometalated iridium(III) metal complex 1a as a stabilizer of hypoxia-inducible factor-1α (HIF-1α). In vitro biophysical and cellular analyses demonstrate that this compound binds to Von Hippel-Lindau (VHL) and inhibits the VHL-HIF-1α interaction.

View Article and Find Full Text PDF

A selection of bioactive polyphenols of different structural classes, such as the ellagitannins vescalagin and vescalin, the flavanoids catechin, epicatechin, epigallocatechin gallate (EGCG), and procyanidin B2, and the stilbenoids resveratrol and piceatannol, were chemically modified to bear a biotin unit for enabling their immobilization on streptavidin-coated sensor chips. These sensor chips were used to evaluate in real time by surface plasmon resonance (SPR) the interactions of three different surface-bound polyphenolic ligands per sensor chip with various protein analytes, including human DNA topoisomerase IIα, flavonoid leucoanthocyanidin dioxygenase, B-cell lymphoma 2 apoptosis regulator protein, and bovine serum albumin. The types and levels of SPR responses unveiled major differences in the association, or lack thereof, and dissociation between a given protein analyte and different polyphenolic ligands.

View Article and Find Full Text PDF

In this study, an original method of macromolecular design was used to develop a hyaluronidase-1 (HYAL1) inhibitor from its principal substrate, hyaluronic acid (HA). HA-based nanoparticles (HA-NP) were obtained by copolymer self-assembly and their effects on HYAL1 activity were investigated by combining different analytical tools. Compared to HA, HA-NP exhibited an enhanced stability against HYAL1 degradation while maintaining its interaction with the HA receptors CD44 and aggrecan.

View Article and Find Full Text PDF

Surface plasmon resonance (SPR)-based instruments have become gold-standard tools for investigating molecular interactions involving macromolecules. The major advantage is that the measured signal is sensitive to changes in mass. Therefore, all kinds of complexes can be analyzed including those with compounds as small as cations.

View Article and Find Full Text PDF

Due to the wealth of actors involved in the development of atherosclerosis, molecular imaging based on the targeting of specific markers would substantiate the diagnosis of life-threatening atheroma plaques. To this end, TEG4 antibody is a promising candidate targeting the activated platelets (integrin αIIbβ3) highly represented within the plaque. In this study, scFv antibody fragments were used to functionalize multimodal imaging nanoparticles.

View Article and Find Full Text PDF

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

View Article and Find Full Text PDF

Background: Although the Luminex single antigen flow beads (SAFB) and the flow cytometry crossmatch (FCXM) are the most sensitive assays used for anti-HLA antibodies characterization in transplant recipients, their semi-quantitative fluorescence read-out is not closely linked to graft outcome.

Methods: Surface plasmon resonance (SPR) was implemented to determine truly quantitative parameters of five human monoclonal anti-class I HLA antibodies (mAbs): first the active concentration and then the binding constants. The results were compared to those obtained with SAFB and T-cell FCXM (T-FCXM).

View Article and Find Full Text PDF

The mTOR is a central regulator of cell growth and is highly activated in cancer cells to allow rapid tumor growth. The use of mTOR inhibitors as anticancer therapy has been approved for some types of tumors, albeit with modest results. We recently reported the synthesis of ICSN3250, a halitulin analogue with enhanced cytotoxicity.

View Article and Find Full Text PDF

Human leukocyte antigen (HLA) donor-specific antibodies are key serum biomarkers for assessing the outcome of transplanted patients. Measuring their active concentration, i.e.

View Article and Find Full Text PDF

DNA and RNA guanine-rich oligonucleotides can form non-canonical structures called G-quadruplexes or "G4" that are based on the stacking of G-quartets. The role of DNA and RNA G4 is documented in eukaryotic cells and in pathogens such as viruses. Yet, G4 have been identified only in a few RNA viruses, including the Flaviviridae family.

View Article and Find Full Text PDF

Mycoplasmas are "minimal" bacteria able to infect humans, wildlife, and a large number of economically important livestock species. Mycoplasma infections include a spectrum of clinical manifestations ranging from simple fever to fulminant inflammatory diseases with high mortality rates. These infections are mostly chronic, suggesting that mycoplasmas have developed means to evade the host immune response.

View Article and Find Full Text PDF

In flow beads assays, the interference of IgM for IgG anti-HLA antibodies detection is not precisely understood. Using the screening flow beads assay for class I HLA antibodies, we analyzed the binding of two IgG mAbs, the anti-class I HLA W6/32 and an anti-beta-2-microglobulin, in the presence of an anti-beta-2-microglobulin IgM mAb. In neat serum, the IgM mAb impaired the detection of both IgG.

View Article and Find Full Text PDF

A surface plasmon resonance (SPR)-based SELEX approach has been used to raise RNA aptamers against a structured RNA, derived from XBP1 pre-mRNA, that folds as two contiguous hairpins. Thanks to the design of the internal microfluidic cartridge of the instrument, the selection was performed during the dissociation phase of the SPR analysis by recovering the aptamer candidates directly from the target immobilized onto the sensor chip surface. The evaluation of the pools was performed by SPR, simultaneously, during the association phase, each time the amplified and transcribed candidates were injected over the immobilized target.

View Article and Find Full Text PDF

Isothermal titration calorimetry (ITC) has long been used for kinetic studies in chemistry, but this remained confined to enzymatic studies in the biological field. In fact, the biological community has long had the tendency of ignoring the kinetic possibilities of ITC considering it solely as a thermodynamic technique, whereas surface plasmon resonance is seen as the kinetic technique par excellence. However, the primary signal recorded by ITC is a heat power which is directly related to the kinetics of the reaction.

View Article and Find Full Text PDF