Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
In this study, an original method of macromolecular design was used to develop a hyaluronidase-1 (HYAL1) inhibitor from its principal substrate, hyaluronic acid (HA). HA-based nanoparticles (HA-NP) were obtained by copolymer self-assembly and their effects on HYAL1 activity were investigated by combining different analytical tools. Compared to HA, HA-NP exhibited an enhanced stability against HYAL1 degradation while maintaining its interaction with the HA receptors CD44 and aggrecan. HA-NP displayed a strong and selective inhibition of HYAL1 activity and retarded the hydrolysis of higher-molar-mass HA in solution. A co-nanoprecipitation process was used to formulate a range of hybrid nanoparticle samples, which demonstrated the specificity and efficiency of HA-NP in HYAL1 inhibition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202005212 | DOI Listing |