In recent years, microneedles (MNs) have shown high potential as drug delivery devices capable of administering different drugs in a simple, fast, and minimally invasive manner. Their ability to pierce the stratum corneum barrier heavily outweighs the inconveniences posed by conventional administration methods such as hypodermal injections, creams, or ointments. In this work, high-performance, single-component polysaccharide-based microneedles, .
View Article and Find Full Text PDFInt J Biol Macromol
August 2025
Wound care is a critical issue for healthcare systems, which translates into an increased demand for innovative wound dressings that can expedite the healing process while ensuring patient comfort and safety. In this context, the development of sustainable biopolymeric materials for wound care applications has gained considerable interest. In this study, functional biopolymeric films, composed of xylans, chitosan, and a deep eutectic solvent (DES), were prepared by solvent casting.
View Article and Find Full Text PDFMelanoma often requires adjuvant therapy to combat tumor proliferation and metastasis. In this context, microneedle systems (MNs) present a promising avenue for minimally invasive delivery of drugs or bioactive compounds with natural anticancer properties, targeting the deeper layers of the skin. Herein, we describe the fabrication of bioactive dissolving microneedles composed of carboxymethylcellulose (CMC) and fucoidan (Fuc) using a simple and eco-friendly micromolding technique.
View Article and Find Full Text PDFACS Biomater Sci Eng
May 2025
The successful replication of the intricate architecture of human tissues remains a major challenge in the biomedical area. Three-dimensional (3D) bioprinting has emerged as a promising approach for the biofabrication of living tissue analogues, taking advantage of the use of adequate bioinks and printing methodologies. Here, a hydrogel bioink based on gelatin (Gel) and nanofibrillated cellulose (NFC), cross-linked with genipin, was developed for the 3D extrusion-based bioprinting of hepatocarcinoma cells (HepG2).
View Article and Find Full Text PDFMarkers of phonological and articulatory processing, though at times difficult to identify, may be useful for the assessment of changes in the speech of people with mild cognitive impairment (MCI) and Alzheimer's disease (AD). To review the evidence on phonological and articulatory speech processing in older adults with MCI and AD and identify the most sensitive speech assessment tasks for detecting impairments in these abilities. This scoping review of the PubMed, Scopus, Lilacs, Web of Science, Google Scholar, ProQuest, and Embase databases was updated in April 2024.
View Article and Find Full Text PDFThe development of bioink formulations with suitable properties is fundamental for the progress of 3D bioprinting. The potential of cellulose, the most abundant biopolymer, in this realm has often been underestimated, relegating it essentially to a reinforcement additive of bioinks. In this work, cell-laden bioink formulations, composed exclusively of cellulose, viz.
View Article and Find Full Text PDFMelanoma is one of the most aggressive types of skin cancer, and the need for advanced platforms to study this disease and to develop new treatments is rising. 3D bioprinted tumor models are emerging as advanced tools to tackle these needs, with the design of adequate bioinks being a fundamental step to address this challenging process. Thus, this work explores the synergy between two biobased nanofibers, nanofibrillated cellulose (NFC) and lysozyme amyloid nanofibrils (LNFs), to create pectin nanocomposite hydrogel bioinks for the 3D bioprinting of A375 melanoma cell-laden living constructs.
View Article and Find Full Text PDFThis study focuses on the preparation of layered bacterial nanocellulose (BNC) patches for drug delivery and wound healing in the context of herpes labialis. Nanostructured patches were prepared by selective aqueous diffusion of acyclovir (ACV, antiviral drug), hyaluronic acid (HA, skin healing promoter), and glycerol (GLY, plasticizer and humectant) in the BNC network, followed by assembly into trilayered patches with ACV on the central layer of the patch (ACV) or divided between two layers (ACV), to modulate drug release. Both patches showed good layers' adhesion and thermal stability (125 °C), UV barrier properties, good static (Young's modulus up to 0.
View Article and Find Full Text PDFBiopolymeric implantable patches are popular scaffolds for myocardial regeneration applications. Besides being biocompatible, they can be tailored to have required properties and functionalities for this application. Recently, fibrillar biobased nanostructures prove to be valuable in the development of functional biomaterials for tissue regeneration applications.
View Article and Find Full Text PDFThe growing concerns on environmental pollution and sustainability have raised the interest on the development of functional biobased materials for different applications, including food packaging, as an alternative to the fossil resources-based counterparts, currently available in the market. In this work, functional wood inspired biopolymeric nanocomposite films were prepared by solvent casting of suspensions containing commercial beechwood xylans, cellulose nanofibers (CNF) and lignosulfonates (magnesium or sodium), in a proportion of 2:5:3 wt%, respectively. All films presented good homogeneity, translucency, and thermal stability up to 153 °C.
View Article and Find Full Text PDF3D bioprinting is a versatile technique that allows the fabrication of living tissue analogs through the layer-by-layer deposition of cell-laden biomaterials, viz. bioinks. In this work, composite alginate hydrogel-based bioinks reinforced with curcumin-loaded particles of cellulose esters (CEpCUR) and laden with human keratinocytes (HaCaT) are developed.
View Article and Find Full Text PDFAntimicrobial photodynamic therapy (aPDT) is a potent tool to surpass the global rise of antimicrobial resistance; still, the effective topical administration of photosensitizers remains a challenge. Biopolymer-based adhesive films can safely extend the residence time of photosensitizers. However, their wide application is narrowed by their limited water absorption capacity and gel strength.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Biopolymeric injectable hydrogels are promising biomaterials for myocardial regeneration applications. Besides being biocompatible, they adjust themselves, perfectly fitting the surrounding tissue. However, due to their nature, biopolymeric hydrogels usually lack desirable functionalities, such as antioxidant activity and electrical conductivity, and in some cases, mechanical performance.
View Article and Find Full Text PDFFront Bioeng Biotechnol
December 2022
Polysaccharides and proteins are extensively used for the design of advanced sustainable materials. Owing to the high aspect ratio and specific surface area, ease of modification, high mechanical strength and thermal stability, renewability, and biodegradability, biopolymeric nanofibrils are gaining growing popularity amongst the catalog of nanostructures exploited in a panoply of fields. These include the nanocomposites, paper and packaging, environmental remediation, electronics, energy, and biomedical applications.
View Article and Find Full Text PDFInt J Biol Macromol
February 2023
The development of suitable bioinks is an important research topic in the field of three-dimensional (3D) bioprinting. Herein, novel hydrogel-based bioinks composed of nanofibrillated cellulose (NFC) and gellan gum (GG) in different NFC/GG mass proportions (90:10, 80:20, 70:30, and 60:40) were developed and characterized. The increase in the content of GG, as well as its combination with NFC, enhanced their rheological properties, increasing both storage (G') and loss (G") moduli and the G' recovery capacity of the hydrogels (from 70.
View Article and Find Full Text PDFThe aim of this study is to prepare dissolvable biopolymeric microneedle (MN) patches composed solely of sodium carboxymethylcellulose (CMC), a water-soluble cellulose derivative with good film-forming ability, by micromolding technology for the transdermal delivery of diclofenac sodium salt (DCF). The MNs with ≈456 µm in height displayed adequate morphology, thermal stability up to 200 °C, and the required mechanical strength for skin insertion (>0.15 N needle ).
View Article and Find Full Text PDFGreen composites made of bioplastics reinforced with natural fibers have gained considerable attention over recent years. However, the use of natural fibers in composites usually compromise some key properties, such as the impact strength and the processability of the final materials. In the present study, two distinct additives, namely an epoxidized linseed oil (ELO) and a sugar-based surfactant, viz.
View Article and Find Full Text PDFIn this study, alginate nanocomposite hydrogel bioinks reinforced with lysozyme nanofibers (LNFs) were developed. Alginate-LNF (A-LNF) suspensions with different LNF contents (1, 5 and 10 wt.%) were prepared and pre-crosslinked with 0.
View Article and Find Full Text PDFThe transdermal administration of nonsteroidal anti-inflammatory drugs (NSAIDs) is a valuable and safer alternative to their oral intake. However, most of these drugs display low water solubility, which makes their incorporation into hydrophilic biopolymeric drug-delivery systems difficult. To overcome this drawback, aqueous solutions of bio-based deep eutectic solvents (DES) were investigated to enhance the solubility of ibuprofen, a widely used NSAID, leading to an increase in its solubility of up to 7917-fold when compared to its water solubility.
View Article and Find Full Text PDFBacterial nanocellulose (BNC) membranes, with remarkable physical and mechanical properties, emerged as a versatile biopolymeric carrier of bioactive compounds for skin care applications. In this study, BNC membranes were loaded with glycerol (as plasticizer and humectant agent) and different doses (1-3 μg cm) of an aqueous extract obtained from the hydro-distillation of Labill. leaves (HDE), for application as sheet facial masks.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2022
Natural polymers, such as polysaccharides and proteins, are being extensively utilized as substrates to create advanced materials [...
View Article and Find Full Text PDFNatural polymers have emerged as promising candidates for the sustainable development of materials in areas ranging from food packaging and biomedicine to energy storage and electronics. In tandem, there is a growing interest in the design of advanced materials devised from naturally abundant and renewable feedstocks, in alignment with the principles of Green Chemistry and the 2030 Agenda for Sustainable Development. This review aims to highlight some examples of the research efforts conducted at the Research Team BioPol4fun, Innovation in BioPolymer-based Functional Materials and Bioactive Compounds, from the Portuguese Associate Laboratory CICECO-Aveiro Institute of Materials at the University of Aveiro, regarding the exploitation of natural polymers (and derivatives thereof) for the development of distinct sustainable biobased materials.
View Article and Find Full Text PDFNanomaterials (Basel)
October 2021
Cellulose, the most abundant natural polymer, is a versatile polysaccharide that is being exploited to manufacture innovative blends, composites, and hybrid materials in the form of membranes, films, coatings, hydrogels, and foams, as well as particles at the micro and nano scales. The application fields of cellulose micro and nanoparticles run the gamut from medicine, biology, and environment to electronics and energy. In fact, the number of studies dealing with sphere-shaped micro and nanoparticles based exclusively on cellulose (or its derivatives) or cellulose in combination with other molecules and macromolecules has been steadily increasing in the last five years.
View Article and Find Full Text PDFGreen composites, composed of bio-based matrices and natural fibers, are a sustainable alternative for composites based on conventional thermoplastics and glass fibers. In this work, micronized bleached Eucalyptus kraft pulp (BEKP) fibers were used as reinforcement in biopolymeric matrices, namely poly(lactic acid) (PLA) and poly(hydroxybutyrate) (PHB). The influence of the load and aspect ratio of the mechanically treated microfibers on the morphology, water uptake, melt flowability, and mechanical and thermal properties of the green composites were investigated.
View Article and Find Full Text PDF